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Abstract 

The reaction-diffusion master equation (RDME) is commonly used to model processes where 

both the spatial and stochastic nature of chemical reactions need to be considered. We show 

that the RDME in many cases is inconsistent with a microscopic description of diffusion 

limited chemical reactions and that this will result in unphysical results. We describe how the 

inconsistency can be reconciled if the association and dissociation rates used in the RDME are 

derived from the underlying microscopic description. These rate constants will however 

necessarily depend on the spatial discretization. At fine spatial resolution the rates approach 

the microscopic rate constants defined at the reaction radius. At low resolution the rates 

converge to the macroscopic diffusion limited rate constants in 3D, whereas there is no 

limiting value in 2D. Our results make it possible to develop spatially discretized reaction-

diffusion models that correspond to a well-defined microscopic description. We show that this 

is critical for a correct description of 2D systems and systems that require high spatial 

resolution in 3D.  
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Introduction 

Quantitative analysis of intercellular reaction networks will in many cases need to consider 

both the spatial and stochastic aspects of chemical processes. Spatial, because diffusion is not 

sufficiently fast to make the system well-stirred between individual reaction events. 

Stochastic, because the number of reactants within diffusion range commonly is low, such 

that the probabilistic and non-linear nature of chemistry invalidates mean-field descriptions. 

In recent years a number of strategies to model and simulate stochastic reaction-diffusion 

systems have been suggested (ChemCell, Smoldyn, GRFD, MesoRD, SmartCell, MCell etc.). 

These can be traced back to the two different basic theoretical frameworks for describing 

chemical reaction in dilute solutions; the spatially and temporally continuous Smoluchowski 

framework (von Smoluchowski, 1917) and the spatially discretized reaction-diffusion (or 

multivariate) master equation (RDME, (Nicolis and Prigogine, 1977) (Gardiner et al., 1976)). 

Including its extension to non diffusion limited (Collins and Kimball, 1949; Noyes, 1961) and 

reversible reactions (Berg, 1978) the former continuous description is clearly more 

fundamental, whereas the coarse grained RDME is better suited for mathematical analysis 

involving more than two molecules (Lee and Cardy, 1995) and for large scale simulation 

(Fange and Elf, 2006).  

In RDME, space is divided into subvolumes. It has been suggested that these should 

be smaller than the mean free path between reactions, such that subvolumes can be considered 

well-stirred (Baras and Mansour, 1996). They should at the same time be larger than the mean 

free path between collisions with solvent molecules, so that movement can be considered 

diffusive. The more demanding condition on the lower boundary is however that  subvolumes 

need to be sufficiently large for molecules to lose correlation in the subvolume between 

reactions (Baras and Mansour, 1996; Elf and Ehrenberg, 2004). The latter constraint is 

actually too restrictive and would for instance not be possible to satisfy in 2D, as will be 

shown in this letter. 

In the RDME the state of the system is defined as the number of molecules of each 

species in each subvolume. The state changes when chemical reactions occur in a subvolume 

or when a molecule diffuses between subvolumes. These events are considered elementary in 

the sense that they have a constant probability to occur each infinitesimal time interval. 

Furthermore, the probability for a reaction or diffusion event only depends on the 

instantaneous local concentration in the subvolume. For example the probability that the first 

order event kA ⎯⎯→∅  occurs during tδ  is tk aδ Ω , where  is the concentration of A in the a



subvolume  is the volume of the subvolume. Similarly the probability that the association 

event 

Ω
kA B+ ⎯ C⎯→  occurs is tk abδ Ω . Diffusion events are considered first order reactions 

such that the probability that an A molecule jumps from one subvolume to a neighbour during 

tδ  is diftk f aδ Ω

diffk

, where the jump rate  is chosen to satisfy the diffusion equation. For 

example  for cubic subvolumes with side length . Taken together, these events 

define a RDME that describes how the probabilities change over the state space as a function 

of time.  

dik ff
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Because of its relative simplicity the RDME framework has been commonly used both 

in physics, chemistry and biology over the decades. However, with the recent explosion of 

computational systems biology there has been a growing interest in how RDME is related to 

more detailed descriptions (Isaacson, 2008; Erban and Chapman, 2009). Two important 

remaining issues are how RDME relates to reversible reactions in the Smoluchowski 

description at the microscopic level, and how the spatial dimension influences the RDME 

model. In this letter we answer these questions. We will start from the microscopic model for 

a reversible interaction between two molecules in the Smoluchoswki framework with the 

microscopic boundary condition from Collins and Kimball (1949). We introduce a spatial 

discretization of the partial differential equation (PDE) that can be directly interpreted as a 

RDME, where the association and dissociation rates in the RDME are identified as boundary 

conditions for the PDE. Next we derive a mathematical model for how the discretized 

boundary conditions depend on the spatial discretization as well as the microscopic rate 

constants. Finally we use the scale dependent rate constants to demonstrate that it is possible 

to make a RDME involving many molecules that is consistent with the microscopic 

description.  

Methods and Results 

The spatial aspects of chemical reactions are important for association and dissociation 

reactions rates since they depend on correlation between two molecules (Noyes, 1961; Berg, 

1978). Irreversible zeroth and first order events do however not have any spatial dependence. 

We will therefore focus on the reversible chemical complex formation that can be represented 

by the following scheme,  

 a

d

k

k
A B C⎯⎯→+ ←⎯⎯ , (1)  



where  is the association rate constant and  is the dissociation rate constant. These 

macroscopic rate constants  and  are defined in a volume that is much larger than the 

molecules themselves. These rates generally depend on how fast the molecules diffuse, their 

reaction radius and how fast they react when they meet. The reaction radius is the distance at 

which molecules associate and dissociate microscopically. For example, in 3D the 

macroscopic association rate is given by (Collins and Kimball, 1949) 

ak dk

ak dk
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where  is the microscopic association rate , k ρ  is the reaction radius , and  is the sum of 

diffusion rate constants for the two reactants (Noyes, 1961).. The microscopic association rate 

 is defined such that 

D

k tkbρδ  is the probability that an A molecule will bind during time tδ  if 

there is a concentration bρ  of B at the reaction radius. In the limit of fast diffusion, i.e. 

4 D kπρ

4

>>

k D

, we obtain . On the other hand, the diffusion limited association rate is ak = k

a πρ= .  

Similarly, the macroscopic dissociation rate in 3D is  
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where γ  is the microscopic dissociation rate. Such a dissociation event positions the molecule 

at a distance of the reaction radius. It may seem strange the macroscopic dissociation rate 

constant depends on the rate of diffusion and the microscopic association rate constant . This 

is however necessarily the case because macroscopic dissociation is a competition between 

immediate reassociation and separation by diffusion (Berg, 1978). On average the molecules 

will bind back 

k

(4 ) (4 )D k Dπρ π+ /

dK k k k

ρ

a d

 times before they lose spatial correlation. The 

equilibrium constant γ= / = /  does however not depend on the diffusion constant.  

The relations (2) and (3) are derived from a microscopic model based on the 

Smoluchowski framework extended to reversible and non-diffusion limited reactions (below). 

This approach does not work in 2D where the macroscopic rate constants are not well-

defined. However, to tie in directly with the RDME framework, it is more appropriate to 

consider the mean times for association in a finite region, which are well-defined in both 2D 

and 3D. In 3D, the mean-time approach gives the same macroscopic association rate constant 

as derived from the Smoluchowski approach. In 2D, however, increasing the size of the 



region leads to an ever decreasing association rate constant.  

We will now use this framework as the microscopic reference and study a two-particle 

system. Without loss of generality, one of the particles defines the center of a spherical 

coordinate system. The other particle, the ligand, is freely diffusing with a diffusion rate 

constant that is the sum of the two particles’ diffusion rate constants in a common reference 

system. The distance between the molecules’ centers of mass is denoted . Let  be the 

probability density for the ligand to remain unbound and separated from the target by  at 

time  and 

r ( )p r t,

r

t bp  the probability for a bound state at time t. The time evolution of the system is 

then determined by  
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where  is the microscopic association rate constant, k γ  is the microscopic dissociation rate 

constant,  is the diffusion rate constant and D 3ω =  in 3D and 2ω =  in 2D. The microscopic 

rate constants are defined by the boundary condition of the diffusion equation at the interface 
r ρ=   
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where 24ε πρ= in 3D and 2ε πρ=  in 2D. At the  reflective boundary  r R ρ= >> ,  
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The red curves in Fig 1 show the time evolution for the probability of being in the bound state 

( )bp t  assuming that the particles are bound from the start, i.e. (0) 1bp =  and . We 

will now use the system described by Eqs. 4-6 as the microscopic reference and study a two-

particle system in a spherical reaction volume with radius R. 

( 0) 0p r, =
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 and V  is the effective 

volume of the innermost subvolume, that is 3h 3) )π ρ + ρ= / −  in 3D and 
2(( ) )h 2V π ρ= + − ρ  in 2D.  

The question is which values should be used for the reaction rates  and . 

Conventionally one would use the macroscopic reaction rates, i.e.  and 

dq

a

aq

a dq kaq k= =  

(Haken, 1975; Gardiner et al., 1976; Lemarchand and Nicolis, 1976). However, in Fig 1 a and 

b we see how poorly the RDME describes the kinetics of the relaxation processes when we 

use the diffusion limited rate constants for different discretizations. It is unsatisfactory that the 

solution of the RDME depends on the arbitrary discretization in this way and also that the 

deviation from the correct curves gets more pronounced the finer the discretization. The 

reason for the poor behavior is that the reaction no longer is diffusion limited when the 

molecules end up in the same subvolume at fine discretization, where the diffusion aspect of 

the reaction is handled explicitly by the diffusive jumps. In the limit that we let  Eq. 0h → (7) 

is in fact a simple numerical scheme to solve Eq. (4), in which case we obviously would use 

the microscopic rate constants, i.e. aq k=  and dq γ= . It appears that we need to adjust the 

rate constants used in the RDME such that the contribution of diffusion gets smaller at fine 

discretization.  

In order to determine these effective or mesoscopic rate constants spanning the gap 

between the micro and macroscopic rates we will solve the continuous reaction-diffusion 

equation for the central subvolume [ ], hρ ρ + under the constraints given by the RDME. Thus 

all movements in and out of the inner subvolume are accounted for by the jump probabilities 

between neighboring subvolumes at rates determined by the diffusion constant and geometry.  

The initial condition for the PDE is therefore a homogeneous probability density  

 
1( 0)p r
V

, = ,  (8) 



Where V is the accessible volume of the innermost subvolume as defined above. We calculate 

the rate of the first association event in competition with the diffusive jump rate 1f  out of the 

subvolume. The diffusive jumps out of the domain are equally probable anywhere in the 

subvolume. The mean free time for a molecule in the volume, the residence time,  
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where assp  is the probability for a molecule to associate to the target rather than jumping out. 

The effective rate constant is,  
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eff
res ass

p fk
pτ
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To determine assp , Eq. (4) with a homogeneous loss term representing diffusive jumps,  
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is solved with a flow condition on the inner boundary  
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and a reflecting outer boundary at R=ρ+h 
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where ( ) 2A r rπ=  in 2D and 2( ) 4A r rπ=  in 3D. The association probability  
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follows. The discretization-dependent solution can be expressed as  

 
( ) ( )

( )
1 1a

kq h
Gα β αβ β

=
+ − −

,
 (15) 

where ( h)β ρ ρ= / +  and α  is the degree of diffusion control; in 2D, (2 )k Dα π= /  and in 

3D, (4 )k Dα πρ= / . G(β) is a function determined only by geometry and is given by  
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where I  and K  are modified Bessel functions of the first and second kind, and Q also is a 

function of β 

( )( )2
1 / 1 1Q f R D ωω β β⎡ ⎤= / = − −⎣ ⎦  

In both cases the dissociation rate constant  is simultaneously determined by the 

constant ratio given by the equilibrium constant 

( )dq h

( )q h ( )a dq h k Kγ/ = / = .  

In Fig. 2 the effective mesoscopic rates  and given by Eqs. ( )aq h

(h →

( )dq h

)

(15) are plotted 

as function of . As expected, the association rate constants approach the microscopic rate 

constants in the limit of fine discretization . Subsequently  approaches the 

microscopic dissociation rate 

h

0 dq

γ  in the same limit. In 3D the mesoscopic association rate 

Eq. (15) converges to the diffusion limited macroscopic rate given by Eq. (2) when h ρ>>

dk

. 

At the same time, the dissociation rate  converges to the macroscopic reaction rate . This 

dissociation event includes multiple microscopic reassociation events and ultimately loss of 

correlation between the dissociating molecules. In 2D however, there is no well-defined 

limiting value for . Instead the mesoscopic association rate constant slowly decreases for 

larger discretizations. The reason for this is that the macroscopic rate constant in 2D is 

concentration dependent and the concentration decreases as the subvolume gets larger.  

dq

aq
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high spatial resolution.   

Another way to test the validity of the mesoscopic rate constants Eq. (15) is to use 

them when solving the RDME for the two-molecule system, Eq. (7). In Fig. 1c and 1d these 

results are compared to the reference solution. It is clear that RDME evolutions using the 

mesoscopic rate constants are in far better agreement with the reference solution than the time 

evolutions with fixed rate constants seen in Figs. 1a and b. It is only for the coarsest 

discretization of the 2D system that it is not possible to accurately model the decay process 

with the RDME.  

3. Examples 

1. Relaxation to equilibrium 

The mesoscopic reaction rate constants have been derived for pairs of molecules. In order to 

test if these rate constants can be used also when there are many molecules involved we have 

to rely on Monte Carlo simulation of the RDME. For this purpose we use the MesoRD 

software (Hattne et al., 2005) that implements an efficient Next Subvolume Method (Elf and 

Ehrenberg, 2004) for sampling trajectories from the RDME. When modeling a many particle 

system the RDME is defined in a Cartesian coordinate system that is common for all 

molecules. The volume is discretized into cubic subvolumes with side length l, that are taken 

to corresponds to the spherical volume including the reactants (i.e with radius hρ + ). Fig. 3 

shows the relaxation kinetics of a system with 1000 complexes in 3D and 100 in 2D. For 

dashed lines the rate constants ( )a aq k∞ =  and ( )dq dk∞ =  are used and the relaxation 

kinetics is strongly dependent on the spatial discretization. The equilibrium point is however 

correct since a dk k k γ/ = / . For the solid lines the mesoscopic rates  and  from 

Eq. 

( )aq h (dq )h

(15) are used and the relaxation kinetics is practically identical for different at 

discretizations, except when the discretization is very close to the size of the actual molecules 

(2ρ=20nm). The reason for this deviation will be discussed in detail elsewhere. It can also be 

noted that at the most coarse level, the resolution is insufficient to describe the relaxation 

kinetics in the 2D system.  
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be reevaluated. Concerning the upper limit, it was previously suggested that subvolumes 

should be smaller than the reaction free path (Baras and Mansour, 1996). This is obviously 

impossible for the diffusion limited reversible interactions that we have analyzed in this 

paper, since rebinding reactions occur also on the smallest length scales. Therefore the notion 

of a reaction free path needs to be redefined to exclude the microscopic rebinding events that 

are accounted for in the diffusion limited rate constants. When using the new mesoscopic rate 

constants the subvolumes should be smaller than the mean reaction free path for interactions 

between molecules that have not just have dissociated from each other.  

Concerning the lower limit, it was previously suggested that the subvolumes need to 

be significantly larger than the reaction radii such that molecules can be fully dissociated 

within single subvolumes (Baras and Mansour, 1996; Elf and Ehrenberg, 2004). In 3D this 

would correspond to the case when the macroscopic rate constant has reached the 

macroscopic limit ( 10h ρ≥ ). In 2D it has not been possible to give a clear-cut lower limit of 

the subvolume size since the molecules do not loose correlation of previous interactions 

before they participate in other reactions. However, if subvolumes are this large they do not 

satisfy the constraint on the upper limit.  

With the new mesoscopic rate constants the lower limit is now relieved and there is 

nothing that prevents decreasing the subvolumes to microscopic length scales comparable to 

the size of the molecules and the mean free paths between solvent interactions. This resolves 

the problem of modeling 2D systems since subvolume sizes can be chosen such that there is a 

clear separation between the previous dissociation event and following association to another 

molecule. It also makes it possible to simulate 3D systems where the mean free path between 

reactions is just a few molecule radii. 

The new way to calculate reaction rates opens the possibility to make RDME 

simulation on unstructured grids (Engblom et al., 2009), where some subvolumes tend to 

become very small. It will also allow for the development of software solutions that 

seamlessly can change the spatial and temporal resolution within the same modeling 

framework, such that it is possible to find the optimal trade-off between accuracy and 

efficiency.  
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