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Abstract

The reaction-diffusion master equation (RDME) is commonly used to model processes where
both the spatial and stochastic nature of chemical reactions need to be considered. We show
that the RDME in many cases is inconsistent with a microscopic description of diffusion
limited chemical reactions and that this will result in unphysical results. We describe how the
inconsistency can be reconciled if the association and dissociation rates used in the RDME are
derived from the underlying microscopic description. These rate constants will however
necessarily depend on the spatial discretization. At fine spatial resolution the rates approach
the microscopic rate constants defined at the reaction radius. At low resolution the rates
converge to the macroscopic diffusion limited rate constants in 3D, whereas there is no
limiting value in 2D. Our results make it possible to develop spatially discretized reaction-
diffusion models that correspond to a well-defined microscopic description. We show that this
is critical for a correct description of 2D systems and systems that require high spatial

resolution in 3D.
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Introduction

Quantitative analysis of intercellular reaction networks will in many cases need to consider
both the spatial and stochastic aspects of chemical processes. Spatial, because diffusion is not
sufficiently fast to make the system well-stirred between individual reaction events.
Stochastic, because the number of reactants within diffusion range commonly is low, such
that the probabilistic and non-linear nature of chemistry invalidates mean-field descriptions.
In recent years a number of strategies to model and simulate stochastic reaction-diffusion
systems have been suggested (ChemCell, Smoldyn, GRFD, MesoRD, SmartCell, MCell etc.).
These can be traced back to the two different basic theoretical frameworks for describing
chemical reaction in dilute solutions; the spatially and temporally continuous Smoluchowski
framework (von Smoluchowski, 1917) and the spatially discretized reaction-diffusion (or
multivariate) master equation (RDME, (Nicolis and Prigogine, 1977) (Gardiner et al., 1976)).
Including its extension to non diffusion limited (Collins and Kimball, 1949; Noyes, 1961) and
reversible reactions (Berg, 1978) the former continuous description is clearly more
fundamental, whereas the coarse grained RDME is better suited for mathematical analysis
involving more than two molecules (Lee and Cardy, 1995) and for large scale simulation
(Fange and Elf, 20006).

In RDME, space is divided into subvolumes. It has been suggested that these should
be smaller than the mean free path between reactions, such that subvolumes can be considered
well-stirred (Baras and Mansour, 1996). They should at the same time be larger than the mean
free path between collisions with solvent molecules, so that movement can be considered
diffusive. The more demanding condition on the lower boundary is however that subvolumes
need to be sufficiently large for molecules to lose correlation in the subvolume between
reactions (Baras and Mansour, 1996; EIf and Ehrenberg, 2004). The latter constraint is
actually too restrictive and would for instance not be possible to satisfy in 2D, as will be
shown in this letter.

In the RDME the state of the system is defined as the number of molecules of each
species in each subvolume. The state changes when chemical reactions occur in a subvolume
or when a molecule diffuses between subvolumes. These events are considered elementary in
the sense that they have a constant probability to occur each infinitesimal time interval.
Furthermore, the probability for a reaction or diffusion event only depends on the

instantaneous local concentration in the subvolume. For example the probability that the first

order event 4 —~—> occurs during Ot is 5tkQa, where a is the concentration of A in the



subvolume Q is the volume of the subvolume. Similarly the probability that the association

event A+ B—*—C occurs is 5tkQab . Diffusion events are considered first order reactions
such that the probability that an A molecule jumps from one subvolume to a neighbour during

ot is otk

4 $2a , where the jump rate &, is chosen to satisfy the diffusion equation. For

example k,, =D/l * for cubic subvolumes with side length /. Taken together, these events

define a RDME that describes how the probabilities change over the state space as a function
of time.

Because of its relative simplicity the RDME framework has been commonly used both
in physics, chemistry and biology over the decades. However, with the recent explosion of
computational systems biology there has been a growing interest in how RDME is related to
more detailed descriptions (Isaacson, 2008; Erban and Chapman, 2009). Two important
remaining issues are how RDME relates to reversible reactions in the Smoluchowski
description at the microscopic level, and how the spatial dimension influences the RDME
model. In this letter we answer these questions. We will start from the microscopic model for
a reversible interaction between two molecules in the Smoluchoswki framework with the
microscopic boundary condition from Collins and Kimball (1949). We introduce a spatial
discretization of the partial differential equation (PDE) that can be directly interpreted as a
RDME, where the association and dissociation rates in the RDME are identified as boundary
conditions for the PDE. Next we derive a mathematical model for how the discretized
boundary conditions depend on the spatial discretization as well as the microscopic rate
constants. Finally we use the scale dependent rate constants to demonstrate that it is possible
to make a RDME involving many molecules that is consistent with the microscopic

description.

Methods and Results

The spatial aspects of chemical reactions are important for association and dissociation
reactions rates since they depend on correlation between two molecules (Noyes, 1961; Berg,
1978). Irreversible zeroth and first order events do however not have any spatial dependence.
We will therefore focus on the reversible chemical complex formation that can be represented
by the following scheme,

A+B<_%>c, (1)
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where k, is the association rate constant and k, is the dissociation rate constant. These
macroscopic rate constants k, and k, are defined in a volume that is much larger than the

molecules themselves. These rates generally depend on how fast the molecules diffuse, their
reaction radius and how fast they react when they meet. The reaction radius is the distance at
which molecules associate and dissociate microscopically. For example, in 3D the
macroscopic association rate is given by (Collins and Kimball, 1949)

4mp Dk

P 2
4zpD +k

where k is the microscopic association rate , p is the reaction radius , and D is the sum of
diffusion rate constants for the two reactants (Noyes, 1961).. The microscopic association rate

k is defined such that otkb, is the probability that an A molecule will bind during time 6t if
there is a concentration b, of B at the reaction radius. In the limit of fast diffusion, i.e.
4mpD >>k, we obtain k, =k . On the other hand, the diffusion limited association rate is
k,=4rpD .

Similarly, the macroscopic dissociation rate in 3D is

4mpDy

=, 3
¢ 4mpD + k )

where y is the microscopic dissociation rate. Such a dissociation event positions the molecule

at a distance of the reaction radius. It may seem strange the macroscopic dissociation rate
constant depends on the rate of diffusion and the microscopic association rate constantk . This
is however necessarily the case because macroscopic dissociation is a competition between
immediate reassociation and separation by diffusion (Berg, 1978). On average the molecules

will bind back (4zpD+k)/(4zpD) times before they lose spatial correlation. The
equilibrium constant K, =k/y =k, / k, does however not depend on the diffusion constant.

The relations (2) and (3) are derived from a microscopic model based on the
Smoluchowski framework extended to reversible and non-diffusion limited reactions (below).
This approach does not work in 2D where the macroscopic rate constants are not well-
defined. However, to tie in directly with the RDME framework, it is more appropriate to
consider the mean times for association in a finite region, which are well-defined in both 2D
and 3D. In 3D, the mean-time approach gives the same macroscopic association rate constant

as derived from the Smoluchowski approach. In 2D, however, increasing the size of the



region leads to an ever decreasing association rate constant.

We will now use this framework as the microscopic reference and study a two-particle
system. Without loss of generality, one of the particles defines the center of a spherical
coordinate system. The other particle, the ligand, is freely diffusing with a diffusion rate
constant that is the sum of the two particles’ diffusion rate constants in a common reference

system. The distance between the molecules’ centers of mass is denoted . Let p(r,t) be the
probability density for the ligand to remain unbound and separated from the target by » at

time ¢ and p, the probability for a bound state at time ¢. The time evolution of the system is

then determined by

ot P! 5 or

d
%(t)#p(p,t)—mb(t),

ap(ral‘):l) 1 a (ra)—l ap(rat)j
4)

where k is the microscopic association rate constant, y is the microscopic dissociation rate

constant, D is the diffusion rate constant and @ =3 in 3D and @w =2 in 2D. The microscopic
rate constants are defined by the boundary condition of the diffusion equation at the interface

r=p

De op(r,t)

5 =—kp(p,t)+yp,(t) 5
A

r=p )

where ¢ =47p°in 3D and & = 27zp in 2D. At the reflective boundary »=R>> p,

op(r,t)

=0. 6
5 (6)

r=R

The red curves in Fig 1 show the time evolution for the probability of being in the bound state
p,(¢) assuming that the particles are bound from the start, i.e. p,(0)=1 and p(r,0)=0. We

will now use the system described by Egs. 4-6 as the microscopic reference and study a two-

particle system in a spherical reaction volume with radius R.
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Figure 1. Approaching equilibrium binding for two molecules at different RDME discretizations (h inset).
Diffusion-limited reactions with D=1um?/s, p=10nm and association rate constants chosen such that the degree
of diffusion control a=100 and dissociation rate constants chosen the probability of the bound state at
equilibrium is 0.01 in 3D. Using total volume V'=1um’ (a, ¢), and 2D, with total area V=1um’ (b, d) we have (a)
macroscopic rate constants k, == 1.3/ 107"°m’s”" and k&= 13.0s”", (b) macroscopic rate constants k,= 2.33 10
Pm’s" and kg= 2315, (c) rate constants according to Eq. (15) with k=1.26 10" "m’s"and y=1240 s, and (d)
rate constants according to (15) with k=6.28 10"m’s”'and y=62200 s,

The RDME

Our two particle system results in a simple reaction-diffusion master equation. The domain is
discretized in » by n shell-shaped volumes using the step size 4. It is only in the innermost
shell reactions can occur. Let p,(#) be the probability for the ligand to be unbound in the
volume where r € (p+(j—1)h, p+ jh). Then master equation approximation of Equation (4)

can be written



o0 s, (1) g (1), (1)

dt |14
dp,(?) 9.
1 =g,p,— hp +4,O)p, ) ——= p, (1)
dt V
dp, (1) "
c;t =g Pin—(&+ )P+ [P
dp (t
p ( ):_gnpn—i_f;l—lpn—l’
dt
where i=2,..,n-1, f; =Da)h(:’—i), g;=Do h(r’_‘]r e =p+jh and V is the effective

volume of the innermost subvolume, that is V =443)(p+h)’ —p’) in 3D and
V=r({(p+h) —p°) in 2D.
The question is which values should be used for the reaction rates ¢, and ¢, .

Conventionally one would use the macroscopic reaction rates, i.e. g, =k, and g, 6 =k,

(Haken, 1975; Gardiner et al., 1976; Lemarchand and Nicolis, 1976). However, in Fig 1 a and
b we see how poorly the RDME describes the kinetics of the relaxation processes when we
use the diffusion limited rate constants for different discretizations. It is unsatisfactory that the
solution of the RDME depends on the arbitrary discretization in this way and also that the
deviation from the correct curves gets more pronounced the finer the discretization. The
reason for the poor behavior is that the reaction no longer is diffusion limited when the
molecules end up in the same subvolume at fine discretization, where the diffusion aspect of
the reaction is handled explicitly by the diffusive jumps. In the limit that we let # — 0 Eq. (7)
is in fact a simple numerical scheme to solve Eq. (4), in which case we obviously would use
the microscopic rate constants, i.e. ¢, =k and g, =y . It appears that we need to adjust the
rate constants used in the RDME such that the contribution of diffusion gets smaller at fine
discretization.

In order to determine these effective or mesoscopic rate constants spanning the gap
between the micro and macroscopic rates we will solve the continuous reaction-diffusion

equation for the central subvolume [ P, P+ h] under the constraints given by the RDME. Thus

all movements in and out of the inner subvolume are accounted for by the jump probabilities
between neighboring subvolumes at rates determined by the diffusion constant and geometry.

The initial condition for the PDE is therefore a homogeneous probability density

1
,0 = 8
p(r,0) 7 ®)



Where V' is the accessible volume of the innermost subvolume as defined above. We calculate
the rate of the first association event in competition with the diffusive jump rate f, out of the
subvolume. The diffusive jumps out of the domain are equally probable anywhere in the
subvolume. The mean free time for a molecule in the volume, the residence time,

1-—
r = p ass

res > (9)
h

where p_ is the probability for a molecule to associate to the target rather than jumping out.

The effective rate constant is,

— p(lSS — fi (10)

T 1/p, —1

res

keff

To determine p_ , Eq. (4) with a homogeneous loss term representing diffusive jumps,

op(r.t) _ 1 op(r.t)

— 1 11

o =RV G (11)

is solved with a flow condition on the inner boundary

op(p,t
DAY 2L _ oo, (12)
or
and a reflecting outer boundary at R=p+h
DA(p)MZO, (13)
Ox

where A(r)=2zr in 2D and A(r) =4z’ in 3D. The association probability

Py = [ kp(p.1)dt (14)
follows. The discretization-dependent solution can be expressed as

k
h) =
9.(h) 1+aG(B)-ap(1-B)

B

(15)

where f=p/(p+h) and « is the degree of diffusion control; in 2D, o =k /(27D) and in

3D, a =k/(4npD) . G(p) is a function determined only by geometry and is given by



1 LK, (BO)+K (D), (BO)
PO LK (BO)-K(O),(BO)

(0+1)e?"™?+0-1
(0+1)(1- Q)2 +(0-1)(1+ BO)

G(p)= in 2D, and

(16)

G(p) = in 3D,

where / and K are modified Bessel functions of the first and second kind, and Q also is a

function of 3

Q=m=\/a)/[(l—ﬂ)(1_ﬂfv)]

In both cases the dissociation rate constant ¢g,(#) is simultaneously determined by the
constant ratio given by the equilibrium constant g, (#)/q,(h)=k/y =K .

In Fig. 2 the effective mesoscopic rates g, (4) and g, (k) given by Egs. (15) are plotted
as function of /. As expected, the association rate constants approach the microscopic rate
constants in the limit of fine discretization (4 — 0). Subsequently g, approaches the
microscopic dissociation rate y in the same limit. In 3D the mesoscopic association rate
Eq. (15) converges to the diffusion limited macroscopic rate given by Eq. (2) when 2>> p.
At the same time, the dissociation rate g, converges to the macroscopic reaction rate k, . This

dissociation event includes multiple microscopic reassociation events and ultimately loss of
correlation between the dissociating molecules. In 2D however, there is no well-defined
limiting value for ¢, . Instead the mesoscopic association rate constant slowly decreases for
larger discretizations. The reason for this is that the macroscopic rate constant in 2D is

concentration dependent and the concentration decreases as the subvolume gets larger.
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Figure 2. Mesoscopic rate constants for different discretizations (h) and different degrees of diffusion control
(@). Results from analytical expression Eq. (15) (circles) are compared to numerically optimized result (dashed
line) for =100 (red), o=1 (green), a=0.01(blue) Left For the 3D system V'=1Ium’, p=10nm. Both D and the
microscopic rate (k) are changed such that the macroscopic rate constant is the same (k,=1.27 10™"° m’s™) for
different degree of diffusion control . The microscopic dissociation rate y is adapted such that the probability for
being bound at equilibrium is 0.001.

Right For the 2D system V'=1um’, p=10nm. Both D and the microscopic rate (k) are changed such that the rate
constant is the same at h=2.5um for different degree of diffusion control. The microscopic dissociation rate y is
adapted such that the probability for being bound at equilibrium is 0.001.

To test if the derived mesoscopic rates are appropriate also for intermediate
discretizations we postulate that the probability for being bound or unbound should not

depend on the discretization. In particular we demand that the relaxation rate A , where
S (7, d9p ()
A= 2t 17
J.O dt ( )

should be independent of discretization and equal to the relaxation rate for the a highly

resolved reference solution of Eq.(4). 4 will increase monotonically with ¢, (and
q, =K, -q,). For each discretization there is a unique value for g (%) such that the relaxation

rate of the master equation is equal to that of the reference solution.

In Fig. 2 we see how this ¢, depends on the discretization for different degrees of

diffusion control in 3D and 2D. These curves were obtained by minimizing the difference
between the relaxation rate A(Eq.(17)) for the microscopic reference, Eq. (4), and the
discretized RDME, Eq. (7). The numerically optimized mesoscopic rates are compared to
those given by Eq. (15). We note that the agreement is excellent for different degrees of
diffusion control, which implies that the analytical expression also leads to discretization
independent relaxation rates. Fig. 2 also exemplifies that one and the same macroscopic rate
constant corresponds to many different microscopic models at fine discretization. For this

reason knowledge about the microscopic parameters is needed to make correct simulations at



high spatial resolution.

Another way to test the validity of the mesoscopic rate constants Eq. (15) is to use
them when solving the RDME for the two-molecule system, Eq. (7). In Fig. 1c and 1d these
results are compared to the reference solution. It is clear that RDME evolutions using the
mesoscopic rate constants are in far better agreement with the reference solution than the time
evolutions with fixed rate constants seen in Figs. la and b. It is only for the coarsest
discretization of the 2D system that it is not possible to accurately model the decay process

with the RDME.
3. Examples

1. Relaxation to equilibrium

The mesoscopic reaction rate constants have been derived for pairs of molecules. In order to
test if these rate constants can be used also when there are many molecules involved we have
to rely on Monte Carlo simulation of the RDME. For this purpose we use the MesoRD
software (Hattne et al., 2005) that implements an efficient Next Subvolume Method (EIf and
Ehrenberg, 2004) for sampling trajectories from the RDME. When modeling a many particle
system the RDME is defined in a Cartesian coordinate system that is common for all
molecules. The volume is discretized into cubic subvolumes with side length /, that are taken

to corresponds to the spherical volume including the reactants (i.e with radius p+#4 ). Fig. 3
shows the relaxation kinetics of a system with 1000 complexes in 3D and 100 in 2D. For

dashed lines the rate constants g,(®)=4k, and g,()=k, are used and the relaxation

kinetics is strongly dependent on the spatial discretization. The equilibrium point is however

correct since k,/k, =k/y. For the solid lines the mesoscopic rates ¢, (#) and g,(h) from

Eq. (15) are used and the relaxation kinetics is practically identical for different at
discretizations, except when the discretization is very close to the size of the actual molecules
(2p=20nm). The reason for this deviation will be discussed in detail elsewhere. It can also be
noted that at the most coarse level, the resolution is insufficient to describe the relaxation

kinetics in the 2D system.
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Figure 3. Approaching equilibrium with RDME using different discretization (1, inset). The reaction radius is
10 nm and the diffusion rate constant for each molecular species is 0.5 um’s™'. The association rate constant is
chosen such that the degree of diffusion control o = 100 and the dissociation rates are chosen such that the
probability for an individual molecule to be bound in the complex C is 0.5 at equilibrium.

(Left) 3D system with 10° molecules and total volume 1um’ averaged over 5 trajectories: Relaxation kinetics is
plotted using rates according to Eq. (15) with k = 1.26 10"m’s”" and y = 6.28 10° s™' (solid lines) and for the
fixed macroscopic rate constants k, = 1.24 10"’m’s” and kq=62.2 s (dashed lines).

(Right) 2D system with 10> molecules and total area of 1pum?* averaged over 100 trajectories: Relaxation kinetics
is plotted using rates according to Eq. (15) with k = 6.28 10"’m’s” and y =3.14 10* s™' (solid lines) and for the
fixed macroscopic rate constants k, = 3.46 10"’m’s” and ky=173 s (dashed lines).

2. Non-Equilibrium Steady state

The spatial discretization of the RDME changes the kinetics of the system, but not the
equilibrium point. However, in non-equilibrium situations, changes in kinetics of individual
reactions typically lead to changes in the steady state. This implies that the spatial
discretization of the RDME can change also the steady state of a system. To exemplify this
extend the system Eq. (1) to

[4+B=c
ky
A—L s

| B—2>0

The introduction of a zeroth order irreversible birth event and irreversible first or decay events
are straight forward, since they do not depend on the spatial correlations between molecules.
However, note that there is a big difference between the reversible first order dissociation
event and a first order decay event. The former depends on a number of microscopic

reassociation events and therefore also on the discretization whereas the latter, by definition,



does not.

In Fig. 4 we see how the steady state copy number of C now depends on the spatial
discretization unless we use the mesoscopic, scale-dependent, rate constants calculated from
Eq.(15). In agreement with Fig 3a the corrected rate constants results a discretization

dependant steady state, except when the discretization is close to the size of the reactants.
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Figure 4. The time evolution of the number of C molecules in the reaction system (Eq. 18) averaged over

20 realizations in 3D. k;=1pMs™, k,=10s™,V=1pum’. The microscopic rate constants k=2.51 10" "m’s™"

p=10nm and D=1pm’s™, such that the reversible reactions are diffusion limited (a=100). y=2020s™" , such that
the macroscopic rate dissociation rate is equal to 2k,. The dashed lines are from simulations with the
macroscopic rate constants k,= 2.49 107m’s™, ke=20s"", and the solid lines are from simulations with the

corrected mesoscopic rate constants.

4. Discussion

We find that the Reaction-diffusion Master Equation for a system with diffusion-limited
reactions corresponds to different microscopic chemical systems at different discretization.
This is because the reaction rates are kept constant, although in reality they shift from being
diffusion-limited at coarse discretization to being reaction limited at fine discretization. We
have shown how the rate constant can be calculated such that RDMEs at different
discretizations are consistent with the same microscopic model. In particular, when the

discretization length scale approaches the reaction radius p information about the
microscopic reaction rate constants £ and A4 as well as p are needed to make a physically
correct model. At coarse discretizations in 3D (/4 >10p ) many microscopic models converge
and can be accurately described with certain diffusion limited rate constants, k£, and k,. In

2D systems there is no such convergence, and in theory the rate constants will have to be
corrected on all length scales.

In the light of our results, the rules for how to choose the size of subvolumes need to



be reevaluated. Concerning the upper limit, it was previously suggested that subvolumes
should be smaller than the reaction free path (Baras and Mansour, 1996). This is obviously
impossible for the diffusion limited reversible interactions that we have analyzed in this
paper, since rebinding reactions occur also on the smallest length scales. Therefore the notion
of a reaction free path needs to be redefined to exclude the microscopic rebinding events that
are accounted for in the diffusion limited rate constants. When using the new mesoscopic rate
constants the subvolumes should be smaller than the mean reaction free path for interactions
between molecules that have not just have dissociated from each other.

Concerning the lower limit, it was previously suggested that the subvolumes need to
be significantly larger than the reaction radii such that molecules can be fully dissociated
within single subvolumes (Baras and Mansour, 1996; Elf and Ehrenberg, 2004). In 3D this
would correspond to the case when the macroscopic rate constant has reached the

macroscopic limit (2 >10p ). In 2D it has not been possible to give a clear-cut lower limit of

the subvolume size since the molecules do not loose correlation of previous interactions
before they participate in other reactions. However, if subvolumes are this large they do not
satisfy the constraint on the upper limit.

With the new mesoscopic rate constants the lower limit is now relieved and there is
nothing that prevents decreasing the subvolumes to microscopic length scales comparable to
the size of the molecules and the mean free paths between solvent interactions. This resolves
the problem of modeling 2D systems since subvolume sizes can be chosen such that there is a
clear separation between the previous dissociation event and following association to another
molecule. It also makes it possible to simulate 3D systems where the mean free path between
reactions is just a few molecule radii.

The new way to calculate reaction rates opens the possibility to make RDME
simulation on unstructured grids (Engblom et al., 2009), where some subvolumes tend to
become very small. It will also allow for the development of software solutions that
seamlessly can change the spatial and temporal resolution within the same modeling
framework, such that it is possible to find the optimal trade-off between accuracy and

efficiency.
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