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Abstract: Bi-stable chemical systems are the basic building blocks for intracellular memory and
cell fate decision circuits. These circuits are built from molecules, which are present at low copy
numbers and are slowly diffusing in complex intracellular geometries. The stochastic reaction-
diffusion kinetics of a double-negative feedback system and a MAPK phosphorylation-
dephosphorylation system is analysed with Monte-Carlo simulations of the reaction-diffusion
master equation. The results show the geometry of intracellular reaction compartments to be
important both for the duration and the locality of biochemical memory. Rules for when the systems
lose global hysteresis by spontaneous separation into spatial domains in opposite phases are
formulated in terms of geometrical constraints, diffusion rates and attractor escape times. The
analysis is facilitated by a new efficient algorithm for exact sampling of the Markov process
corresponding to the reaction-diffusion master equation.
1 Introduction

Biochemical systems can be in different, self-perpetuating
states depending on previous stimuli [1–3]. Such biochemi-
cal memory is exemplified by the irreversible developmental
switches in the cell cycle [4], the maturation of oocytes [5],
the on-off switches in gene-activity [6], and the ubiquitous
phosphorylation switches in signal transduction pathways
[7]. The dynamical properties of such systems often defy
intuition, and their analysis requires mathematical modelling
[8]. To account for random transitions between states,
stochastic descriptions of the chemical reactions are
necessary [9, 10] and to account for the cell geometry and
slow intracellular diffusion, spatial considerations are
mandatory [11, 12]. In a recent experimental study [13] it
was demonstrated that bistability can vanish due to spatially
localised fluctuations for inorganic catalysts, and thus
invalidate any macroscopic description of the kinetics. The
present study addresses consequences of similar kinetic
behaviour in intracellular biochemical systems.

Two bi-stable model systems serve to exemplify the
stochastic and spatial aspects of intracellular signalling. The
results reveal that the average times for random transitions
between two self-perpetuating states are reduced by finite
diffusion rates, and suggest a general rule for the
spontaneous emergence of spatial domains in opposite
states and loss of global bistability. The findings disclose
previously unknown physical constraints on the design of
intracellular control circuits that depend on stable attractors,
and fill a gap in the current knowledge of spatially
heterogeneous bi-stable systems.

Stochastic models for intracellular kinetics are gaining
in importance for the interpretation of in vivo experi-
ments [14, 15]. These models are commonly based on the
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homogeneous chemical master equation (ME) for well
stirred systems [10, 16]. This approximation, where the
state of the system is defined by the total copy numbers of the
different reactants, is only valid if equilibration between
the microstates of the reactants, thermal equilibration
between the reactants and the solvent, and equilibration
of the reactants between all positions in the system
volume occur on a much faster timescale than the chemical
reactions [10].

Since diffusion of molecules in a living cell is
considerably slower than in the test tube [17], the condition
of spatial homogeneity is expected to be violated in many
cases. In fact, many important intracellular processes
depend on spatial heterogeneity [11, 12]. Among these are
cell division [18], morphogenesis [19], local signal proces-
sing in neurons [20], and some types of chemotaxis [21].

A feasible starting point for stochastic descriptions of
spatially heterogeneous systems is to divide the reaction
volume into a finite number of subvolumes and apply the
reaction diffusion master equation (RDME or multivariate
master equation) [9, 22, 23]. The state of such a system is
defined by the copy numbers of all reactants in each
artificial subvolume, which must be chosen small enough to
ensure homogeneity [23]. Diffusion is accounted for as first-
order elementary reactions for the exchange of molecules
between subvolumes. The rate constants are D=l2; where D
is the diffusion constant for a particular reactant and l is the
side length of the cubic subvolume [9, 23].

Stochastic analyses of spatially extended bi-stable
systems are difficult for two reasons. Firstly, the complexity
of the RDMEs makes analytical solutions hard to come by
and secondly, direct numerical solutions are impossible due
to the large state space. Accordingly, there exists but a
handful of RDME descriptions of bi-stable non-equilibrium
systems in 1D [23, 24], and none in 2D or 3D, where the
most interesting biological problems reside. Furthermore,
the properties of bi-stable systems in 2D and 3D cannot be
inferred from 1D considerations. The reason is that
curvature of domain fronts, which is important for
macroscopic system dynamics in 2D and 3D [25, 26], is
missing in 1D.

The present RDME-analysis of stochastic reaction
diffusion kinetics in 3D was made possible by the
Syst. Biol., Vol. 1, No. 2, December 2004



development of a new algorithm, the Next Subvolume
Method (NSM), which is described in the next Section.

2 Results

2.1 The Next Subvolume Method

When the chemical reactions in an intracellular 3D system
are fast in relation to diffusion, the subvolumes used in the
RDME must be small and their number correspondingly
large (several millions) to ensure spatial homogeneity of the
reactants in the subvolumes on the time scale of the
chemical reactions. In such cases, direct application of
Gillespie’s algorithm [27] for Monte Carlo simulations of
the ME is not feasible, due to the linear relation that exists
between the number of subvolumes and the computational
effort. This has prevented such approaches to 2D and 3D
systems, while 1D simulations of the RDME were pioneered
already in 1979 [28]. Progress in stochastic simulations of
3D biological systems was reached in the SmartCell project
[29–31] by the application of the Next Reaction Method
[32] to spatial problems.

We have designed an efficient MC algorithm, the Next
Subvolume Method (NSM), that samples trajectories of the
Markov process corresponding to the RDME (see Sup-
plementary Methods). The trajectories are therefore equiv-
alent to those obtained with Gillespie’s Direct Method [27].
The algorithm has been tailor-made for the RDME and the
computation times scale logarithmically, rather than line-
arly, with the number of subvolumes. Accordingly,
statistically significant results for systems that require
millions of subvolumes can now be obtained with standard
PCs. This leap in computational efficiency originates in a
combination of the Direct Method [27] for sampling the time
for a next reaction or diffusion event in each subvolume,
with Gibson and Bruck’s Next Reaction Method [32], which
is used to keep track of in which subvolume an event occurs
next. The subvolumes are kept sorted in a queue,
implemented as a binary tree, according to increasing time
of the next event. When an event has occurred in the
subvolume at the top of the queue, new event times need to
be sampled only for one (the event is a chemical reaction) or
two (the event is a diffusion jump) subvolume(s).

When the number of subvolumes is large, the NSM is more
efficient than a direct application of the Next Reaction
Method (NRM) to the RDME (see Supplementary Methods).

2.2 Spontaneous domain separation in
bi-stable systems with slow diffusion

We first analyse a bi-stable biochemical system built on
the double-negative feedback principle [2]. Two enzymes,
EA and EB; synthesise two different compounds, A and B,
respectively. The A molecules inhibit the activity of EB and
the B molecules inhibit the activity of EA: Free A and B
molecules are eliminated with the same first-order rate
constant. When EA and EB have the same kinetic
parameters, the system is symmetric with respect to A and B.

EA �k1! EA þ A EB �k1! EB þ B

EA þ B�! �
ka

kd

EAB EABþ B�! �
ka

kd

EAB2 B �k4! ;

EB þ A�! �
ka

kd

EBA EBAþ A�! �
ka

kd

EBA2 A �k4! ;

The double-negative feedback scheme. In the limit of fast
diffusion, the parameters used in this study are: ½EA�tot ¼
½EB�tot ¼ 12:3 nM (200 molecules in 27 femtoliters), k1 ¼
150 s�1; ka ¼ 1:2 	 108 s�1 M�1; kd ¼ 10 s�1; k4 ¼ 6 s�1:
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The RDME and the macroscopic reaction diffusion
equations for the scheme are given in the online
supplementary text A. The total system volume and
diffusion rates are varied as described in the text. The
diffusion constant, D, is set equal for all components and all
reactions given in the scheme are approximated as single-
step transitions. Association and dissociation rate constants
are partially diffusion controlled [33], meaning that they
increase towards asymptotes with increasing diffusion
constants. At finite diffusion rates, the association and
disassociation rate constants were modified accordingly
(see online supplementary text B). The inevitable coupling
between free diffusion and chemical kinetics makes it
difficult to simplify detailed reaction schemes without
distorting the overall properties of the system or making
physically unsound assumptions.

In Fig. 1a, the correlation time ðtcÞ for the number nA of
A molecules is plotted as a function of the linear extension
of the system for different diffusion constants. tc is the
time t at which the normalised autocorrelation function
hnAðtÞnAðt þ tÞi=hnAi2 � 1 has decreased to e�1 of its value
at t ¼ 0: (The correlation time is one-half of the average
time of escape from one of the attractors in a symmetric
bistable system). When diffusion is infinitely fast, so that the
system is homogenous and can be described by the ordinary
ME, the correlation time increases approximately exponen-
tially with the volume of the system (Fig. 1a, black line).
When, in this fast diffusion case, the volume goes to infinity,
the rate of escape from an attractor becomes zero. In this
macroscopic limit, the system is truly bi-stable.

When the diffusion constants are finite, the tc values
deviate significantly from those in the homogenous case:
when the system volume is small, the correlation times are
longer and when the system volume is large, they are shorter
than in the homogenous case. The reason why they are
longer for small volumes can be traced to the slower reaction
kinetics of homogenous systems with finite, as opposed to
infinite diffusion rate [33]. The reason why, in large
volumes, systems with finite diffusion rates have shorter
correlation times than systems with infinite diffusion rates is
more interesting: it has to do with domain separations that
emerge when the reactants have finite diffusion rates.

For the intermediary diffusion constants (Fig. 1a, green
and blue lines), the correlation time increases approximately
exponentially with the volume, albeit with smaller slopes
than in the limit of infinite diffusion rate (Fig. 1a, black
line). For the smallest diffusion constant, however, the
correlation time reaches a plateau where it remains constant,
in spite of further volume increase (Fig. 1a, red line).
Simulations of the total numbers of A and B molecules in
the system are also shown in Fig. 1a (inserts). At a system
volume of 2:53 mm3; the distance between the attractors, as
measured by the absolute value of the difference between
the average numbers of A and B molecules, is largest in the
case of infinite diffusion constants and decreases mono-
tonically with decreasing diffusion rates. The reduced
difference between the attractors results in ever faster
jumps between them.

Further understanding of these events comes from
snap-shots showing how the numbers of A (red dots) and
B (blue dots) molecules are distributed in a large volume
ðV¼63 mm3Þ for systems with slow ðD¼ 2 	 10�9 cm2 s�1Þ
and intermediate ðD ¼ 5 	 10�9 cm2 s�1Þ diffusion rates
(Fig. 1b). Initially, there are only A molecules in the system
and in the slow diffusion case, where there is a distinct
plateau in Fig. 1a, the system rapidly separates into domains
of opposite phases. This means that the system is in different
attractors in different parts of the volume, which explains
231



Fig. 1 Reduction of escape time and domain separation

a Correlation times of A molecules is plotted for different volumes and diffusion constants. Example of time evolution of the total number of free A and B
molecules are given for the points indicated by arrows
b Snap-shots of positions of A and B molecules some times after an initial condition with only B molecules. The volume is 6� 6� 6mm3 and
D ¼ 2 	 10�9 cm2 s�1 and D ¼ 5 	 10�9 cm2 s�1; respectively
why the bi-stability of the total system is almost lost in this
case (Fig. 1a, insert from red line).

When D is 5 	 10�9 cm2 s�1 there is no visible domain
separation, and yet the system jumps between its attractors
at a much faster rate than in the homogenous case with
infinitely fast diffusion (Fig. 1b, compare also black and
blue lines in Fig. 1a). Part of this increase in the
frequency of transitions between the attractors can be
ascribed to the reflecting boundaries. That is, close to the
boundaries local fluctuations in molecule numbers away
from their averages in the dominating phase are
less restrained than at positions distal to the boundaries.
232
This can be seen as patches in the opposite phase near the
corners in Fig. 1b.

To remove such boundary effects, so that the conditions
for domain separation in arbitrarily large systems can be
clarified, we have also simulated the behaviour of the system
in the same volume as in Fig. 1b, but with periodic, rather
than reflecting, boundary conditions. The system displays
domain separation for D ¼ 2 	 10�9 cm2 s�1 but not for
D ¼ 4 	 10�9 cm2 s�1 (see online supplementary Fig. 1). This
implies that the red curve in Fig. 1a for D¼ 2 	 10�9 cm2 s�1

stays at the plateau also when L!1; whereas the
correlation times for the other curves go to infinity.
Syst. Biol., Vol. 1, No. 2, December 2004



Fig. 2 The macroscopic approximation in the limit of large D

The time evolution of the concentrations of A molecules is illustrated by three snap-shots (0.5 s, 3 s and 15 s). The total spatial extension is 120� 120� 0:6 mm
and D ¼ 5 	 10�7 cm2 s�1

a Solution of macroscopic reaction-diffusion partial differential equations
b Realisation of the same process as described by RDME
2.3 The macroscopic reaction-diffusion
equation and curvature of domain fronts

When this bi-stable system is inspected from a macroscopic
perspective, the ordinary reaction diffusion equation
(see online supplementary text A) allows for stable domains
of opposite phases in 1D, but generally not in 2D or 3D. The
reason is that a domain with a concave boundary will devour
a neighbouring domain with its corresponding convex
boundary, and only boundaries that lack curvature can be
long-lived [25]. This is illustrated in Fig. 2, where the
macroscopic reaction-diffusion equation is integrated for a
flat geometry ð120� 120� 0:6 mmÞ: The initial condition is
that, in a square at the centre of the plane, the system is in
the attractor with high concentration of A molecules, and in
the remaining part of the volume, the system is in the other
attractor (Fig. 2a). For comparison, we show a simulation
based on the reaction diffusion master equation (Fig. 2b).
Diffusion is in this case so fast that a large number of
molecules are within diffusion range of each other. In this
limit, the time evolution of the system is primarily governed
by macroscopic laws, and the macroscopic and mesoscopic
approaches lead to similar results (Fig. 2). With increasing
time, the curvature is eliminated in that the initial square
with high A molecule numbers transforms to a circle, which
shrinks more and more and eventually disappears.

2.4 The rule for domain separation

What, then, is the rule that determines if a bi-stable system
spontaneously separates into spatial domains of different
phases? The possibility of domain separation depends, we
suggest, on how two different average times react to changes
in the total reaction volume V. The first is the correlation
time ðtcÞ for a homogenous helper system contained in V
that is constructed in such a way that all chemical rate
constants are identical with those in the real system. That is,
the helper system is modelled as homogeneous but with
diffusion limited rate constants as in the real system.
Syst. Biol., Vol. 1, No. 2, December 2004
The correlation time of the helper system will therefore
depend both on its volume and the diffusion constants (solid
lines in Fig. 3). The second is the time ðtDÞ to mix the
molecules of the real system in V to homogeneity by
diffusion. The mixing time, tD; of the real system will
depend on the shape of the volume and the rate of diffusion.
We suggest that the rule for domain separation is that when
tc � tD for at least one value of V, domain separation will
occur in large systems, but otherwise not.

This type of behaviour is illustrated in Fig. 3 for a system
contained in cubic 3D volume V with side length L ¼ V1=3:
The solid lines are the correlation times ðtcÞ for
helper systems with reaction rates corresponding to
D ¼ 2 	 10�9cm2s�1 (black) and D ¼ 5 	 10�9cm2s�1

Fig. 3 The correlation times for homogeneous helper systems of
different volumes (L3) with kinetic parameters corresponding to
D ¼ 2 	 10�9 cm2 s�1 (black) and D ¼ 5 	 10�9 cm2 s�1 (grey) are
plotted as solid lines. These are compared to mixing times (3L2=D)
of volumes of the same size (dashed). When, for some L, the curves
intersect, the system displays domain separation in sufficiently
large volumes, but not otherwise
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(grey) for the real system. The mixing times ðtDÞ required to
keep the real systems homogenous by diffusion are
proportional [10] to L2=D with an empirically-estimated
constant of proportionality (see online supplementary
text C). The tD values are plotted versus system volume
(dashed lines) for D ¼ 2 	 10�9cm2s�1 (black) and D ¼
5 	 10�9cm2s�1 (gray). When tc>tD for all L, the strong
diffusion coupling between neighbouring regions prohibits
domain separation. When, in contrast, tc < tD in some
interval of L, domain separation is allowed, since the
diffusion coupling between neighbouring regions is weak
enough to allow for local attractor switches without rapid
annihilation of the new phase by the surrounding opposite
phase. In Fig. 3, the black curves for D ¼ 2 	 10�9cm2s�1

intersect, and in accordance with the suggested rule, the
corresponding spatially extended system displays domain
separation (Fig. 1b). In contrast, the grey curves for
D ¼ 5 	 10�9cm2s�1 do not intersect and, also in accordance
with the rule, there is no domain separation (Fig. 1b).

2.5 Diffusion in confined geometries

The cubic 3D volume with side length L ¼ V1=3 has a short
mixing time compared to a system where the same volume
is distributed in a plane with thickness d � V1=3 and
side length L ¼ ðV=dÞ1=2 (2D-like system) or in a tube with
cross-section d2 and side length L ¼ V=d2 (1D-like system).
In the cubic case the mixing time is proportional to V2=3=D;
in the 2D-like case to V=ðDdÞ; and in the 1D-like case to
V2=ðDd4Þ: Since V2=3 � V=d � V2=d4; it follows that
when the same volume V is contained in a thin cylinder, like
in a dendrite (1D-like system) [20], or if it is flattened
between two membranes (2D-like system), the mixing time
is much longer than when V is contained in a spherical or
cubic volume (authentic 3D system). This implies that the
occurrence of domain separation depends on the shape of

Fig. 4 The same volume in different geometries

a A MAPK phosphorylation-dephosphorylation cycle with non-
processive, distributed mechanisms for the kinase (MAPKK) and
phosphatase (MKP) [34]. The scheme of elementary reactions and the
parameters are given in the online supplementary text D
b The system is simulated with D ¼ 2 	 10�8 cm2 s�1 in a bounded volume
of 1000mm3 distributed in different geometries. Only 100mm of the 250mm
tube is shown
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the system volume as well as on the diffusion constant and
the kinetic parameters that determine tj: Fig. 4 illustrates
a case when a bi-stable MAPK phosphorylation-dephos-
phorylation cycle with non-processive, distributed kinase
and phosphatase activities [34] displays domain separation
in a tube or a flat geometry, but not in a cube. This system
is described in more detail in the online supplementary
text D.

2.6 Asymmetric bi-stable systems and
hysteresis

So far, we have described symmetric systems where the
attractors are equally stable. We will finally illustrate what
happens if the MAPK system is made asymmetric by
varying the concentration of MAPKK. Macroscopically, the
MAPK will display hysteresis [2, 34] as demonstrated in
Fig. 5 (line). This means that the system can reach different
steady states depending on initial conditions and that the
state not is reversible for all changes in MAPKK
concentration. Likewise, when the conditions for spon-
taneous domain separation are not fulfilled, the system will
display global hysteresis also in a mesoscopic model at a
timescale that is faster than the escape rates from the
attractors.

However, when spontaneous domain separation emerges,
global hysteresis is lost. Instead, the average fraction of
the volume that is in one attractor is changed when the
concentration of MAPKK is varied over the bi-stable region,
so that the average number of phosphorylated molecules in
the whole volume changes gradually (Fig. 5). Locally,
however, the systems may display hysteresis.

An equivalent loss of global hysteresis due to local
fluctuations was recently demonstrated experimentally in
inorganic surface catalysis [13].

3 Discussion

With the help of a new and highly efficient Monte Carlo
algorithm adapted for the reaction-diffusion master equation
we have analysed the stochastic behaviour of bi-stable
systems in 3D. The results suggest general rules for when
those systems separate into spatial domains of opposite
phases. Spontaneous domain separation requires that a
localised part of the system jumps from an attractor in phase
to an attractor out of phase with the surroundings. For this to
happen, the size of the part of the system that jumps out of
phase must be big enough so that it is not invaded by

Fig. 5 Loss of hysteresis in the MAPK system

X-axis: number of MAPKK molecules in a 54 mm volume. Y-axis:
stationary average number of unphosphorylated MAPK (M, black). In a
macroscopic model the system displays classical hysteresis when the
concentration of MAPKK increases and all other concentrations are kept
constant (line). When the same system is simulated from the RDME in a
1� 1� 54mm volume with D ¼ 2 	 10�8 cm2 s�1; we see a gradual change
in the number of M in the whole volume (circles). Snap-shots of the system
state are indicated for some of the MAPKK concentrations
Syst. Biol., Vol. 1, No. 2, December 2004



neighbouring molecules. At the same time, the size must be
small enough so that the local escape from the original
attractor does not take too long. It is only when there exists a
local volume size for which invasion by diffusion takes a
longer time than attractor escape, that spatial domains
become sufficiently decoupled from their surroundings to
allow for spontaneous domain separation. Accordingly,
systems in tube-like or flat geometries display domain
separation much more easily than do their spherical or cubic
equivalents. Furthermore, geometric restrictions in small
reaction volumes, like intracellular membrane structures,
will reduce attractor escape times in localised areas which
will strongly promote the emergence of spatial domains in
opposite phases. This eliminates hysteresis in the total cell
volume, meaning that absence of hysteresis cannot be used
to infer lack of intrinsic bi-stability of an experimentally
studied system [2].

Bi-stable switches in living cells may for their proper
function depend on the existence of spatial domains in
opposite phase. For instance, long-term potentiation (LTP)
in post synaptic dendrites depends on a bi-stable system
that separates into domains of opposite phase in a single
cell [35, 36]. LTP is maybe partly mediated by
phosphorylation of CaMKII following Ca2þ release [8,
37]. The phosphorylated state of CaMKII displays
hysteresis, in that its activity remains high also after a
reduction of the Ca2þ concentration [38]. These system
properties are intriguing in light of the present results and
lead to a number of questions: (i) how can CaMKII in
adjacent synapses be in different activity states, when
Ca2þ spreads through the dendrite? (ii) why is it that
activated CaMKII in one synapse does not phopsphorylate
CaMKII in neighbouring synapses? (iii) how are spon-
taneous attractor escapes in local areas avoided? The
answers are that the CaMKII system has evolved so that:
(i) calcium signalling is isolated in tiny compartments
(spines) protruding from the dendrites [39]; (ii) CaMKII
can only be active when it is bound to protein scaffolds in
the postsynaptic density [38]; (iii) CaMKII is a 12 subunit
protein complex with about 30 phosphorylation sites,
which makes it resilient to stochastic fluctuations [37].

In other cases, bi-stable control circuits must be in global
attractors that extend throughout the whole intracellular
space. Such examples are the tightly controlled cell fate
decision circuits, which play essential roles in cell cycle
regulation [40] and cell maturation [5]. These circuits must
be designed so that domain separations do not occur and so
that spontaneous attractor escape times are sufficiently long.
This can be achieved by slow reaction kinetics in
combination with unrestrained intracellular diffusion,
ideally in a single, spherical compartment without nooks.

Spatially distributed protein phosphorylation cascades
transmit signals from membrane-bound receptors to
cytosolic targets [41]. These signal molecules are
phosphorylated by membrane-bound kinases and depho-
sphorylated by cytosolic phosphatases, which can lead to
concentration gradients and low signal strength in the
target region [42]. It has been suggested that bi-stable
signal systems could overcome this problem by their
ability to maintain high signal strengths over long
distances [43]. The proposed mechanism is attractive,
but depends critically on the absence of local spontaneous
state changes along communication channels from mem-
brane receptor to target. This requires high signal
molecule concentrations and free diffusion from signal
source to signal target, unhindered by narrow passages or
partially isolated compartments.
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4 Acknowledgments

We thank Otto Berg, Upinder Bhalla, James Ferrell,
Dan Gillespie, Malek Mansour, and Johan Paulsson for
helpful comments on the manuscript. The work was
supported by the National Graduate School of Scientific
Computing and the Swedish Research Council.

5 References

1 Monod, J., and Jacob, F.: ‘General conclusions: teleonomic mecha-
nisms in intracellular metabolism, growth, and differentiation’, Cold
Spring Harbour Symp. Quant. Biol., 1961, 26, pp. 389–401

2 Ferrell, J.E., Jr.: ‘Self-perpetuating states in signal transduction:
positive feedback, double-negative feedback and bistability’, Current
Opinion in Cell Biology, 2002, 14, pp. 140–148

3 Angeli, D., Ferrell, J.E., Jr., and Sontag, E.D.: ‘Detection of
multistability, bifurcations, and hysteresis in a large class of biological
positive-feedback systems’, Proc. Natl. Acad. Sci. USA, 2004, 101,
pp. 1822–1827

4 Tyson, J.J., Chen, K., and Novak, B.: ‘Network dynamics and cell
physiology’, Nat. Rev. Mol. Cell. Biol., 2001, 2, pp. 908–916

5 Xiong, W., and Ferrell, J.E., Jr.: ‘A positive-feedback-based bistable
‘memory module’ that governs a cell fate decision’, Nature, 2003, 426,
pp. 460–465

6 Becskei, A., Seraphin, B., and Serrano, L.: ‘Positive feedback in
eukaryotic gene networks: cell differentiation by graded to binary
response conversion’, Embo. J., 2001, 20, pp. 2528–2535

7 Bhalla, U.S., Ram, P.T., and Iyengar, R.: ‘MAP kinase phosphatase as a
locus of flexibility in a mitogen-activated protein kinase signaling
network’, Science, 2002, 297, pp. 1018–1023

8 Bhalla, U.S., and Iyengar, R.: ‘Emergent properties of networks of
biological signaling pathways’, Science, 1999, 283, pp. 381–387

9 Gardiner, C.: ‘Handbook of stochastic methods’ (Springer-Verlag,
Berlin, 1985, 2nd edn.)

10 Van Kampen, N.G.: ‘Stochastic processes in physics and chemistry’
(Elsevier, Amsterdam, 1997, 2nd edn.)

11 Shapiro, L., and Losick, R.: ‘Dynamic spatial regulation of the bacterial
cell’, Cell, 2000, 100, pp. 89–98

12 Batada, N.N., Shepp, L.A., and Siegmund, D.O.: ‘Stochastic model of
protein-protein interaction: why signaling proteins need to be
colocalized’, Proc. Natl. Acad. Sci. USA, 2004, 101, pp. 6445–6449

13 Johanek, V., Laurin, M., Grant, A.W., Kasemo, B., Henry, C.R., and
Libuda, J.: ‘Fluctuations and bistabilities on catalyst nanoparticles’,
Science, 2004, 304, pp. 1639–1644

14 Paulsson, J.: ‘Summing up the noise in gene networks’, Nature, 2004,
427, pp. 415–418

15 Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., and Cluzel, P.:
‘From molecular noise to behavioural variability in a single bacterium’,
Nature, 2004, 428, pp. 574–578

16 McQuarrie, D.A.: ‘Stochastic approach to chemical kinetics’, J. Appl.
Probab., 1967, 4, pp. 413–478

17 Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J.B., and Leibler, S.:
‘Protein mobility in the cytoplasm of Escherichia coli’, J Bacteriol.,
1999, 181, pp. 197–203

18 Howard, M., and Rutenberg, A.D.: ‘Pattern formation inside bacteria:
fluctuations due to the low copy number of proteins’, Phys. Rev. Lett.,
2003, 90, p. 128102

19 Turing, A.M.: ‘The chemical basis of morphogenesis’, Philos. Trans.
R. Soc. Lond., 1952, 237, pp. 37–72

20 Finch, E.A., and Augustine, G.J.: ‘Local calcium signaling by inositol-
1,4,5-trisphosphate in Purkinje cell dendrites’, Nature, 1998, 396,
pp. 753–756

21 Thar, R., and Kuhl, M.: ‘Bacteria are not too small for spatial sensing of
chemical gradients: an experimental evidence’, Proc. Natl. Acad. Sci.
USA, 2003, 100, pp. 5748–5753

22 Nicolis, G., and Prigogine, I.: ‘Self-organization in nonequilibrium
systems’ (John Wiley, New York, 1977)

23 Baras, F., and Mansour, M.M.: ‘Microscopic simulation of chemical
instabilities’, Adv. Chem. Phys., 1997, 100, pp. 393–475

24 Gorecki, J., Kawaczynski, A.L., and Nowakowski, B.: ‘Master
equation and molecular dynamics simulations of spatiotemporal effects
in a bistabile chemical system’, J. Phys. Chem. A, 1999, 103,
pp. 3200–3209

25 Mikhailov, A.: ‘Foundations of synergetics I’, in Haken, H. (Ed.):
(Springer Verlag, Berlin, 1990)

26 Meerson, B.: ‘Domain stability, competition, growth, and selection in
globally constrained bistabile systems’, Phys. Rev. E, 1996, 53,
pp. 3491–3494

27 Gillespie, D.: ‘A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions’, J. Comput.
Phys., 1976, 22, pp. 403–434

28 Malek-Mansour, M., and Houard, J.: ‘A new approximation scheme for
the study of fluctuations in nonuniform nonequilibrium systems’, Phys.
Lett. A, 1979, 70, pp. 366–368

29 Andér, M., Beltrao, P., Di Ventura, B., Ferkinghoff-Borg, J.,
Foglierini, M., Kaplan, A., Lemerle, C., Tomas-Oliveira, I., and
Serrano, L.: ‘SmartCell: a framework to simulate cellular processes that
235



combines stochastic approximation with diffusion and localisation:
analysis of simple gene networks’, Systems Biology, 2004, 1

30 Andér, M.: ‘SmartCell - a general framework for whole cell modelling
and simulation’, UPTEC X 02 021, 2002, http://www.ibg.uu.se/upload/
2002-11-18_162646_535/Maria_A.pdf

31 Kaplan, A.: ‘On whole-cell modelling and simulation’, UPTEC X 01
044, ISSN 1401-2138 2001, http://www.ibg.uu.se/upload/2002-07-
10_225930_995/01044.pdf

32 Gibson, M., and Bruck, J.: ‘Efficient exact stochastic simulation of
chemical systems with many species and channels’, J Phys. Chem. A,
2000, 104, pp. 1876–1889

33 Berg, O.G.: ‘On diffusion-controlled dissociation’, Chem. Phys., 1978,
31, pp. 47–57

34 Markevich, N.I., Hoek, J.B., and Kholodenko, B.N.:
‘Signaling switches and bistability arising from multisite
phosphorylation in protein kinase cascades’, J Cell. Biol., 2004, 164,
pp. 353–359

35 Koch, C.: ‘Biophysics of computation’ (Oxford University Press, New
York, 1999)

36 Lisman, J.E.: ‘A mechanism for memory storage insensitive to
molecular turnover: a bistable autophosphorylating kinase’, Proc.
Natl. Acad. Sci. USA, 1985, 82, pp. 3055–3057
236
37 Lisman, J.E., and Goldring, M.A.: ‘Feasibility of long-term storage of
graded information by the Ca2þ=calmodulin-dependent protein
kinase molecules of the postsynaptic density’, Proc. Natl. Acad. Sci.
USA, 1988, 85, pp. 5320–5324

38 Lisman, J.E., and Zhabotinsky, A.M.: ‘A model of synaptic memory:
a CaMKII=PP1 switch that potentiates transmission by organizing
an AMPA receptor anchoring assembly’, Neuron, 2001, 31,
pp. 191–201

39 Augustine, G.J., Santamaria, F., and Tanaka, K.: ‘Local calcium
signaling in neurons’, Neuron, 2003, 40, pp. 331–346

40 Sha, W., Moore, J., Chen, K., Lassaletta, A.D., Yi, C.S., Tyson, J.J.,
and Sible, J.C.: ‘Hysteresis drives cell-cycle transitions in Xenopus
laevis egg extracts’, Proc. Natl. Acad. Sci. USA, 2003, 100,
pp. 975–980

41 Chang, L., and Karin, M.: ‘Mammalian MAP kinase signalling
cascades’, Nature, 2001, 410, pp. 37–40

42 Kholodenko, B.N.: ‘MAP kinase cascade signaling and endocytic
trafficking: a marriage of convenience?’, Trends Cell. Biol., 2002, 12,
pp. 173–177

43 Kholodenko, B.N.: ‘Four-dimensional organization of protein kinase
signaling cascades: the roles of diffusion, endocytosis and molecular
motors’, J. Exp. Biol., 2003, 206, pp. 2073–2082
Syst. Biol., Vol. 1, No. 2, December 2004

http://www.ibg.uu.se/upload/2002-11-18_162646_535/Maria_A.pdf
http://www.ibg.uu.se/upload/2002-11-18_162646_535/Maria_A.pdf
http://www.ibg.uu.se/upload/2002-07-10_225930_995/01044.pdf
http://www.ibg.uu.se/upload/2002-07-10_225930_995/01044.pdf


 

Supplementary Methods: The Next Subvolume Method 
 
The algorithm described below generates exact realizations of the Markov process described by the reaction diffusion 
master equation. An early version of the algorithm was presented at the SPIE conference on fluctuations and noise in 
biological, biophysical and biomedical systems in Santa Fe 2003  [1].  
 
Short explanation for those who are familiar with the “next reaction method”[2] and the “direct method” 
[3] The reaction and diffusion rates in a single subvolume are given by the numbers of the different types of 
molecules that it contains. The time for the next event in each subvolume, i.e. a chemical reaction or a diffusion 
jump out from it, can thus be calculated individually by the direct method. The question is in which subvolume an 
event occurs first. To identify the subvolume where the first event occurs, we use the next reaction method. A single 
event can change the state of only one or two subvolume(s). If the event was a chemical reaction, the next event time 
has to up-dated only for the subvolume where it occurred. If the event was a diffusion jump out, next event times 
have to be up-dated for the subvolume from which the jump occurred and for the subvolume to which the molecule 
jumped.  
 
The algorithm  

Initialization 
1. Generate a connectivity matrix (Fig. M2) that describes the geometry of the system.  
2. Distribute the initial numbers of molecules between the subvolumes and store in the configuration 

matrix. This can be done randomly or according to any initial distribution. 
3. Calculate the sum of reaction rates ri for each subvolume i and store in the rate matrix. The reaction rates 

are calculated for the size ∆ of the subvolume, as in the reaction-diffusion master equation. 
4. Calculate the sum of diffusion rates for each subvolume, 

1

M i
i i j jj
s n d X

=
= ∑ , where 2

j jd D= is the 
diffusion rate constant for species j. j

iX is the number of molecules of species  j in subvolume i. M is the 
number of species. ni is the number of directions in which the molecules can diffuse. Store si in the rate 
matrix.  

5. For each subvolume i: (a.) sum ri +si, (b.) generate a random number, rand, uniformly distributed 
between 0 and 1 and (c.) calculate the first event time for each subvolume as ln( ) /( )i i irand r sτ = − + . 

6. Make an initial ordering of the subvolumes according to their next event times. The subvolumes are kept 
sorted in a binary tree (an event queue, see below) so that the subvolume for which the event occurs first 
is on the top and all branches have increasing event times.  

Iterations  
7. Assume that λ is the subvolume in which the next event occurs at time t λτ= according to the top 

element of the event queue. Generate a random number rand uniformly distributed between 0 and 1, 
choose a chemical reaction if rand< rλ /(rλ + sλ) and otherwise a diffusion jump.  

8. Reaction event:  
a. Rescale rand from (7.) linearly to [0,1] to determine which reaction occurred as in the direct 

method.  
b. Update the state of the subvolume λ in the configuration matrix according to the state changes 

by reaction. 
c. Recalculate the sum rλ + sλ for the subvolume λ, generate a new random number and calculate 

the time of the next event as ln( ) /( )t rand r s tλ λ λ= − + + . 
d. Insert the active subvolume’s new event time in the event queue and order the queue (see 

below).  
9.  Diffusion event: 

a. Rescale rand from (7.) linearly to [0,1] to determine which type of molecule that diffused away. 
The diffusion intensities are given by the numbers of the different types of molecules weighted 
by their diffusion rate constants. 

b. The direction of the diffusion event is chosen by randomly selecting a column in the connectivity 
matrix. This can be done by rescaling the random number used in 9a (again). 

c. Update the states of both subvolume λ and its neighbor, γ, that got an additional molecule.  
d. Recalculate the sums r sλ λ+  and r sγ γ+ , sample the time to the next event in the subvolumes as 

in 8c. 
e. Insert the subvolumes’ new event times in the event queue and order the queue (see below).  

10. Return to 7. for the next iteration. 



 
 

Further Improvements 
The algorithm can be modified in a number of ways for particular systems depending on tradeoffs between memory 
usage and speed. E.g., it is possible to store all reaction rates for each subvolume, such that they do not have to be 
recalculated in 8a. Alternatively, it is possible to sample the reaction or diffusion event that will occur next 
simultaneously with the event time in 8c and 9d. The draw-back is that a random number is wasted if a molecule 
diffuses into the subvolume before its event time.   
Another possible improvement is to reuse the event time for the subvolume where the state changed because a 
molecule diffused into it in step 9d. Gibson and Bruck [2] proved that the old event time can be reused, without 
sampling a new random number. In the procedure above it is re-sampled every time. Let γ be the subvolume for 
which the state has changed because a molecule diffused into it, so that its total rate changed from rγ,,old+ sγ,old to 
rγ,,new+ sγ,,new. The next event time τnew can be recalculated as ( ) ( )( ), , , ,new old old new new oldr s r s t tγ γ γ γτ τ= + + − + , instead of as 

, ,ln( ) /( )new newrand r s tγ γ− + + , which would require an additional random number. See [2] for more details. This 
improvement has not been used in the present simulations. 
For reaction systems where only a few of the reaction rates in a subvolume are affected by a state change it may be 
advantageous to implement the Next Reaction Method [2] to sample the reaction or diffusion event in each 
subvolume. The procedures described above use the Direct Method [3] at the level of subvolumes. 
Blue et al. [4] and Wong and Easton  [5] have earlier described another binary tree search algorithm for exact Monte 
Carlo simulation of the master equation  [3, 6], which could possibly be useful also for reaction diffusion problems as 
suggested by Breuer et al.  [7].  
In a direct application of the Next Reaction Method, the event times are calculated for each event, rather than for 
each subvolume.  Further all events are ordered in the propriety queue and the geometry of the system is implicitly 
built into the dependency graph, that is used to keep track of how many and which event times that should be 
recalculated after each event. When the number of subvolumes is large, the Next Subvolume Method (NSM) is more 
efficient than a direct application of the Next Reaction Method (NRM) to the RDME. The major reason is that the 
NRM requires an exceptionally large dependency graph to describe which and how many event times that need to be 
recalculated after each event. The size of this data structure would cause memory problems. Furthermore, in the 
NSM the number of elements in the priority queue is equal to the number of subvolumes, C, and the queue is 
reordered twice for each diffusion event. In the NRM the number of elements in the priority queue is approximately 
C(6N+R), where N is the number of diffusing species and R is the number of different reactions in a subvolume. This 
larger queue must at average be reordered more than 12 times for each diffusion event.    
 
 
The event queue 
The event queue allows identification of the subvolume in which a next reaction will occur without searching 
through scheduled reaction times for all subvolumes or keeping them all sorted, which would take a time 
proportional to the number of subvolumes (N). The event queue data structure is a binary tree, in which each 
element contains the index of a subvolume and the time for its next event, provided that no molecule enters by 
diffusion. The queue is ordered so that an element with an earlier event time is higher up on a branch. When the 
event time for a subvolume is changed, its position is changed up or down in the tree. When it gets an earlier time it 
changes place with the cell above until the branch is ordered. When it gets a later time it changes place with the 
subvolume below with the earliest scheduled time until the branch is ordered. Therefore it will take maximally 
log2(N) swaps per iteration to keep the queue sorted. The branched structure is conveniently stored in a queue array, 
where each row is an element of the queue. The elements above element k in the queue are thus placed on a row 
with index “(k/2) truncated to an integer” and the elements below have the row indices 2k and 2k+1. Each element 
in the queue is listed with a reference from an array sorted on subvolume number. This array is necessary to identify 
the element in the queue that corresponds to the neighbor of the active subvolume.   



 
 
The connectivity matrix and boundary conditions 
In order to rapidly find the subvolume number of a neighboring subvolume 
we generate a look-up table; the connectivity matrix. Each row in the matrix 
corresponds to one subvolume and the subvolume indices are conveniently 
chosen as the row numbers. The subvolume indices for each of the six 
neighbors are stored in different columns. This determines the geometry of 
the system. Using the connectivity matrix, one obtains the index for the 
subvolume where a molecule diffuses by randomly choosing a column in the 
row corresponding to the active subvolume. Periodic or closed boundaries 
are simply created by assigning the appropriate neighbors. For closed 
boundaries diffusion can be directed back to the same subvolume by 
assigning the row index to some element in the row. 
                           
 
 
 
 
 
 

i n1 n2 n3 n4 n5 n6  #A #B #C  ri [s-1] si [s-1] ri+si [s-1]  Q 
1 2 1 3 1 5 1  10 2 0  2.2 10 12.2  5 
2 2 1 4 2 6 2  9 1 3  4.2 11.3 15.5  7 
3 4 3 3 1 7 3  5 0 2  2.3 5.4 7.3  2 
4 4 3 4 2 8 4  7 1 1  1.4 6.4 7.8  1 
5 6 5 7 5 5 1  4 0 2  0.4 4.3 4.7  6 
6 6 5 8 6 6 2  7 1 3  0.5 10.3 10.8  9 
7 8 7 7 5 7 3  8 2 4  1.0 13.3 14.3  4 
8 8 7 8 6 8 4  5 0 2  5.3 5.4 10.7  3 

                                        Connectivity matrix                     Configuration                  Rate matrix                      Q-array      

           

                                 
Event Queue                                                                      
 
Fig. M2. Data structures The structures within solid borders are arrays used in the algorithm. The connectivity 
matrix (N×6) stores the neighboring subvolumes’ indices (n1-n6) for each subvolume (rows). This defines the 
geometry and boundary conditions for the system. The configuration matrix (N×M) stores the present number 
of molecules of each species in each cell. The rate matrix (N×3) stores the sum of reaction rate constants (r) 
and the sum of diffusion rate constants (d). The Q array keeps a reference to the subvolume’s position in the 
event queue.  In the event queue the subvolumes are ordered such that the one with the first scheduled event 
time (t) is at the top and each branch is sorted with increasing event times. 

Position in  
Queue (Q) 

Subvolume (SV) τi (s) 

1 4 10.2 
2 3 11.2 
3 8 10.3 
4 7 12.2 
5 1 13.3 
6 5 10.5 
7 2 11.3 
8 6 13.0 

Fig. M1 An example of indexing n3 cells. 



 
Justification  
At time t the probability that any event will occur in subvolume m between t τ+  and t τ τ+ + ∆ and that no event 
occurs in any subvolume before time τ  is  

,

( , ) exp( ) expm n m n
i j i j

i i n jj n

P m r r r rτ τ τ τ τ τ
⎛ ⎞

∆ = ∆ × − =∆ × −⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑∏ .  (1) 

Here, m
irτ∆ is the probability that event i in subvolume m will occur during the short time τ∆ .  m

i
i

rτ∆ ∑ is the 
probability that any event in subvolume m will occur during the short time τ∆ . exp( )n

jr τ−  is the probability that 
reaction j in subvolume n has not occurs during time τ . 

,

exp( )n
j

j n

r τ−∏ is the probability that no event has occurred in 
any subvolume during time τ . 
 
If the total rate of events in a subvolume m =∑ m

i m
i

r a ,  Eq. (1) reduces to 

( , ) expm n
n

P m a aτ τ τ τ⎛ ⎞∆ = ∆ × −⎜ ⎟
⎝ ⎠

∑    (2) 

This expression for the probability that the next event occurs in subvolume m between t τ+  and t τ τ+ + ∆ is 
equivalent to the expression sampled with the Next Reaction Method  [2]. The Next Reactions Method can 
therefore be used to determine in which sub volume the next event will occur as well as the time of this event. 
Next, we sample which event actually occurred in proportion to the rates, m

ir , of the events in subvolume m, i.e. the 
occurrence of event i in subvolume m between t+τ  and t+τ +∆τ  is sampled with probability  

( , , ) ( ) ( , ) exp exp
m

mi
m n i n

n nm

r
P i m P i m P m a a r a

a
τ τ τ τ τ τ τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∆ = ∆ = ∆ × − = ∆ × −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ . (3) 

It can now be seen that Eq. (3) is equivalent to the probability distribution sampled by Gillespie’s direct method  [3].  
This means that the method can be applied also to spatially homogenous reaction networks with a large number of 
sparsely connected sub-networks, where the sub-networks have high internal connectivity. 
 
 
Fig M3. Comparison between the Next Subvolume 
Method and the Direct Method. 
To illustrate in a concrete case the equivalence of 
the algorithm to previous exact methods for 
simulation of the Markov process described by the 
master equation, we have simulated the reaction  

1kA B+ ⎯⎯→∅ with the Direct Method [3] and the 
Next Subvolume Method [this work]. The volume 
is 0.4µm x 0.4µm x 40µm and it is divided into 
1x1x100 subvolumes. k1=108 M-1s-1and D=5·10-8 

cm2s-1. Initially, 1000 A molecules are evenly 
distributed over the subvolumes, whereas 1000 B 
molecules all are located in one of the outermost 
subvolumes.  As time goes by all molecules are 
eventually annihilated. The figure shows contour 
plots for A molecules at the top and B molecules at 
the bottom. The contours corresponds to 5, 10, 15, 
20 molecules.  
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Supplementary Text  
 
A. Equations for the double negative feedback scheme 
The macroscopic reaction-diffusion equations 
The macroscopic reaction-diffusion equations for the scheme in the main text are 
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Each lower case letter on the left side in this equation system is the concentration of a species named by the corresponding 
capital letter.   
 
The reaction-diffusion master equation 
The reaction-diffusion master equation for the double negative feedback scheme in the main text is 
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The numbers of A B A B A 2A, B, E , E , E B, E A, E B and B 2E A molecules are designated A, B, C, D, E, F, G and H, respectively. 
The indices λ or γ specify sub-volumes, with volume 3∆ = , so that e.g. Cλ is the number of EA molecules in sub-volume λ. 
The step operator,E , is defined so that  , (... ,.., ..) (... 1,.., 1..)A B f A B f A Bλ λ λ λ λ

− = + −E . γλ
Xd  is a first order rate constant that 

describes the diffusion jump of a molecule of type X from sub-volume λ to sub-volume γ. 2X Xd d Dλγ γλ= =  for neighboring 
sub-volumes and 0X Xd dλγ γλ= =  otherwise. 
 



 
Criteria for selecting sub-volume size 

The side length   of the cubic sub-volumes was chosen to satisfy the inequalities 
2 2

min6R Dτ  
The first criterion is that  must be much larger than any reaction radius R, so that dissociation events can be properly defined 
within sub-volumes. The second criterion is that the time 2/6D for any molecule to leave a sub-volume must be much smaller 
than the shortest life time τmin among the molecular species, so that all molecules are homogeneously distributed within the 
sub-volumes.   
The 3D simulations were performed with =0.1µm, which is twenty times larger than the reaction radius R=5nm.  In the case of 
the smallest diffusion constant (D=2.10-9cm2s-1), 2/6D is 0.008 s, which is much shorter than the chemical life times of all 
molecules:   

A and B     (k4 + ka[Etot])-1≈0.162s  (τmin) 
EA and EB   (ka[X*])-1 ≈0.358s  
EAB and EBA   (ka[X*]+ kd)-1≈0.256s 
EAB2 and EBA2   (kd)-1≈0.903s 

[X*] is the concentration of the dominant product (A or B) in an attractor.   
 
Variation of the size and number of sub-volumes 

Domain separation and other properties of the system remain the same when the sub-volume size increases from ∆= 3=0.13µm3 
(Fig. N1A) to ∆= 3=0.23µm3 (Fig. N1B). When periodic boundary conditions are used, an increase in the total system volume 
does not affect domain separation (Compare Figs N1A and N1C).    

 
Fig. N1. 
A. D=2.10-9 cm2s-1, 60x60x60=216 000 sub-volumes with =0.1µm, periodic boundaries. 
B. D=2.10-9 cm2s-1, 30x30x30=27 000 sub-volumes with =0.2µm, periodic boundaries. 
C. D=2.10-9 cm2s-1, 120x120x120=1 728 000 sub-volumes with =0.1µm, periodic boundaries. 

 
Domain separation and other properties of the system remain the same when the sub-volume size decreases from 
∆= 3=0.33µm3 (Fig. N2A) to ∆= 3=0.13µm3 (Fig. N2B). In   N2A the number of sub-volumes is 316x316x1=99856 and N2B 
the number of sub-volumes is 1000x1000x3=3000000.  

 

 
Fig. N2. 
A  D=1.10-8 cm2s-1, 330x330x1 sub-volumes with =0.3µm Periodic boundaries. 
B. D=1.10-8 cm2s-1, 1000x1000x3 sub-volumes with =0.1µm Periodic boundaries. 



B. How association and dissociation rate constants depend on the diffusion 
constant 
When the diffusion constant is varied, the association and dissociation rate constants of partially diffusion controlled reactions 
change as well [1-3]. For the binding reaction akA B C+ ⎯⎯→  of spherical A and B molecules the association rate constant is 
given by 

4
4

AB A
a

AB A

D RkN
k

D RN k
π

π
=

+  
DAB is the sum of the diffusion constants for species A and B, R is the reaction radius and k is the (second order) rate constant 
for complex formation when the molecules touch. When 4 Ak DRNπ , the reaction is strictly diffusion controlled. The 
parameter k was fixed at k=1.2.108M-1s-1 and the reaction radius at R=5nm. The disassociation constant Kd=kd/ka was fixed at 
Kd=8.3.10-8M, which specifies how the dissociation rate constant, kd, varies with ka: 

d d ak K k=  

The resulting rate constants are given in Table N1. k1 =150s-1 and k4=6s-1 independent of diffusion constant. 
 

D 
[cm2s-1] 

ka 

[(µM)-1s-1] 
kd 

[s-1] 
0.2.10-8 13.3 1.107 
0.5.10-8 28.6 2.37 
1.0.10-8 46.2 3.82 
2.0.10-8 66.7 5.53 
3.0.10-8 78.3 6.50 

Table N1.  
 



C. The rule for domain separation in 3D  
 
To test the rule for domain separation and to determine the proportionality constant for the mixing time, we have varied the 
system parameters so that τc is changing while the diffusion constant D and τD is fixed (Fig. N3). Systems, for which τc  
intersects  τD (colored curves), display domain separation, while systems without intersections (gray curves) do not.   
 
 

       
 
Fig. N3. Parameter variations. Solid lines are the correlation times for homogeneous systems of volume L3 with 
different parameters (see insert). The systems for which the dashed mixing time curve (3L2/D) intersects with the 
correlation time curve for some size of the systems (L3) display domain separation in a 6x6x6µm3 volume with periodic 
boundaries.     

 
It can be noted that both τc and τD depend on diffusion, so that emergence of domain separation as a result of decreasing 
diffusion constants will take place in some, but not in other, types of systems. We have, for instance, been unable to identify a 
parameter set that allows for domain separation of the MAPK system in cubic volumes, although domain separation readily 
occurs when this system is extended in flat or linear geometries (see Text D).   
 

 



D. The MAPK system 
We have simulated a dual MAPK phosphorylation-dephosphorylation cycle (Fig. N4). This 
simple system can display bi-stability without additional feed-back loops when the MPAKK 
and MKP operate distributive rather than processive [4]. The dephosphorylated MAPK (M) is 
phosphorylated in two steps by MAPKK; first to Mp and then to Mpp as follows [4]  
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k k

k

k k

k

M MAPKK M MAPKK Mp MAPKK

Mp MAPKK Mp MAPKK Mpp MAPKK
−

−

⎯⎯→+ − ⎯⎯→ +←⎯⎯

⎯⎯→+ − ⎯⎯→ +←⎯⎯
  

The rate constants were chosen as k1=0.046 nM-1s-1, k-1=1.8s-1, k2=1.8s-1, k3=0.046 nM-1s-1, k-

3=1.8s-1, k4=50s-1 and the diffusion rate constant as D= 2·10-8cm2s-1. The reaction rate 
constants are similar to those used in [4], where k1=0.02 nM-1s-1, k-1=1s-1, k2=0.01s-1, k3=0.032 nM-1s-1, k-3=1s-1 and k4=15s-1. 
The main difference is that we have increased k2 towards the value of k4 in order to make the kinetics faster and τJ smaller. 
The dephosphorylation reactions are 

1 2

1

3 4

3

k k

k

k k

k

Mpp MKP Mpp MKP Mp MKP

Mp MKP Mp MKP M MKP
−

−

⎯⎯→+ − ⎯⎯→ +←⎯⎯

⎯⎯→+ − ⎯⎯→ +←⎯⎯
   

In reference [4] an ordered dephosphorylation reaction was modeled, where the phosphotyrosine residue is dephosphorylated 
before the phosphothreonine residue. We have neglected the order of the reactions in order to keep the spatial model simple. To 
make the bi-stable system symmetrical, the same kinetic parameters were used in the dephosphorylation and phosphorylation 
schemes.  
The total concentration of MAPK in all forms is 308nM. The total concentration of MAPKK and MKP is 50nm each. The 
simulations (Fig. 3, main text) were all done with 106 sub-volumes with =0.1µm. Initially, all MAPKK and MKP are free, all 
MAPK is in the Mpp form (red) and all molecules are randomly distributed.  No domain separation was seen for cube shaped 
volumes, but could be observed after about 100s when the system was contained in 1D or 2D like geometries.   
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Supplementary Figure 1 
 
Domain separation in 3D with periodic boundaries 

 

 

A. The figure illustrates the same system (6x6x6µm) as in 
Fig 1 in the main text, but with periodic boundaries. When 
D is 2·10-9cm2s-1 (upper panels) the system displays 
domain separation (right) and the time evolution of the 
total number of molecules (left) does not show bi-
stability. When D is 4·10-9cm2s-1 (lower panels) there is 
no domain separation (right) and the system remains in 
one attractor for long times (left). Since boundaries are 
absent, patches with the system in opposite phase in the 
corners are also absent in contrast to the corresponding 
case with reflecting boundaries (Fig. 1B in main text).  
B. Snap-shots of the distribution of molecules in a flat 
system (100x100x0.3µm) after fully developed domain 
separation. The system has periodic (toroidal) boundary 
conditions. The different diffusion constants are given in 
the figure. 
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