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Abstract—In this work, we have developed tools to analyze
prokaryotic cells growing in monolayers in a microfluidic device.
Individual bacterial cells are identified using a novel curvature
based approach and tracked over time for several generations.
The resulting tracks are thereafter assessed and filtered based
on track quality for subsequent analysis of bacterial growth
rates. The proposed method performs comparable to the state-
of-the-art methods for segmenting phase contrast and fluorescent
images, and we show a 10-fold increase in analysis speed.

Index Terms—E. coli, segmentation, time-lapse, microscopy,
tracking.

I. INTRODUCTION

L IVE cell experiments on prokaryotic cells pave the way
to understand the complex biological functions of living

organisms. Many live cell experiments require monitoring
of cells under different conditions over several generations.
Isogenic cells display cell-to-cell variability even when grown
under similar conditions [1]. To study the origin and conse-
quences of such variation it is necessary to monitor many
individual cells for extended periods of time to reach statisti-
cally testable conclusions [2]. Time-lapse experiments usually
generate large quantities of data, which become extremely
difficult for human observers to evaluate in an unbiased way
[3]. Thus, automated systems are necessary to analyze such
datasets in order to reach robust and reproducible results.

Time-lapse imaging of growing bacterial cells are important
both to answer fundamental biological questions related to the
bacterial cell cycle as well as to study responses to changes
in growth conditions due to changes in nutrients or antibiotics
[4]. Based on the growth conditions and imaging modalities,
various automated image segmentation and tracking packages
were developed. For example: MicrobeTracker [5] was de-
signed to segment phase contrast images and detect fluorescent
spots in a parallel fluorescent channel in bacterial cells grown
isolated or in micro-colonies on agarose pads; Schnitzcells [6]
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was specifically designed to analyze fluorescent time-lapse
images of E. coli (Escherichia coli) grown on agarose; and
MAMLE [7] was designed to analyze E. coli from phase
contrast and fluorescent images.

Most image segmentation methods rely on raw pixel inten-
sities to get an initial segmentation result, and further refined
segmentation depends on this initial segmentation. Microbe-
Tracker finds an initial segmentation using Otsu’s thresholding
method [8] followed by edge detection and watershed segmen-
tation. In the final step, active contours are applied to refine
object boundaries. MicrobeTracker needs manual correction of
the first frame to get satisfactory segmentation results for time-
lapse images. It is difficult to analyze large image sequences
in MicrobeTracker due to its inherent memory problems,
and it is often necessary to modify the code for practical
applications. MAMLE uses range filtering to find an initial
segmentation result, followed by multi-scale edge detection
and a maximum likelihood classification to correct over- and
under- segmentation. In Schnitzcells, initial segmentation is
achieved by edge detection followed by post processing to
correct segmentation errors.

Phase contrast images of E. coli exhibit high-intensity
regions inside cellular regions comparable to, or even brighter
than, regions between cells. Relying on raw intensity therefore
leads to over- and under-segmentation at the same time. The
problem is amplified when trying to track cells over time. Even
a 1% error in detection of cells in every frame renders a cell
lineage useless for further analysis if many cells are tracked
over a long time.

Previously published cell tracking algorithms rely on model
evolution, where a model of the cell is evolved over time using
techniques such as active contour models [9] or level sets [10],
and tracking by detection [11]. Tracking by detection involves
two stages; segmentation and tracking. Sometimes both these
steps are combined together to get a final tracking result [12].

In this work, we use tracking by detection, i.e., we sepa-
rate the segmentation and tracking problems and solve them
separately, followed by a quality control and refinement step
where some of the segmentation and tracking errors are
corrected. Cell segmentation is done using our novel Curvature
Based Approach, hereafter called as CBA, and tracking is
done using a state-of-the-art tracking algorithm [13]. In the
following sections we present our segmentation methodology
and compare it with that of MicrobeTracker and MAMLE
on phase contrast as well as fluorescence images, from our
own and previously published experiments. In this work, we
focus on cell tracking of phase contrast microscopy images.
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After segmentation, we track the cells through the time-lapse
sequence and perform post tracking segmentation correction
to get a final segmentation result. Finally, we show how the
combined segmentation and tracking approach can be applied
to quantify differences in cell growth rate under different
experimental conditions.

II. METHODOLOGY

A. Strains, Media and Growth Conditions

For the experiments with fluorescence detection, the E. coli
strain expressed the red fluorescent protein turbo RNA from a
constitutive chromosomal promotor (BW25993 intC::P2rrnB-
tRFP KanR) and cells are grown in LB-media supplemented
with surfactant (Pluronic R© F-108, Sigma #542342, 0.85%
(w/v) final concentration). For the phase contrast experiments,
we used E. coli strain with chromosomal fusion of yellow
fluorescent protein Venus to the lactose permease (SX700
lacY-venus, as described in Choi et al [14]). The cells are
grown in M9 defined minimal media supplemented with
surfactant (Pluronic R© F-108, Sigma #542342, 0.85% (w/v)
final concentration), Amino Acids (RPMI 1640 Amino Acids
Solution (50×), Sigma # R7131) and a carbon source. The
carbon source can be Glycerol (43 mM) or Glucose (22 mM).

The bacterial cell colonies in our own experiments were
grown on a specially designed microfluidic device made
from Polydimethylsiloxane (PDMS) [15][16] with 51 parallel
growth chambers (traps) of size 40 × 40 × 0.9µm, which
are open to growth media exchange at two ends. The cells
grow in a single layer and as the size of the microcolony
gets larger than the trap, excess cells leave the trap through
the outlets, thus maintaining the colony size of approximately
200 cells throughout the experiment. The growth conditions
are maintained by pressure driven flow of media, which is
controlled by an electronic pressure regulator (Elveflow OB1).

B. Image Acquisition

Phase contrast images were acquired at 125 ms exposure
time using a Nikon Ti-E external phase contrast microscope
equipped with a CFW-1312M camera (Scion Corporation)
and a Nikon Apo TIRF 100× NA 1.49 oil objective. The
fluorescence images were acquired using an EMCCD camera
(iXon, Andor Technologies), excitation from a 561 nm cw
solid state laser (Genesis MX 561-500 STM Coherent) with
a ZT561rdc dichroic mirror (Chroma) and two emission filter
(585/40 and 561-notch filter), and a Nikon Plan Apo VC 100×
NA 1.40 oil objective. The microscope was equipped with a
TIR based hardware autofocus that keeps the cells in focus
over days. Time-lapse images for phase contrast were acquired
at regular intervals 10 s to 30 s (depending on experiment) for
fluorescence images they were spaced out to 60 s to limit photo
bleaching and laser damage. Bacterial cell colonies from the
MicrobeTracker [5] and Schnitzcells [6] datasets were used for
comparison. The datasets used in this work are shown in Fig.
1.

(a) Phase data 1 (b) Phase data 2

(c) Phase data 3 (d) Fluorescent data

Fig. 1. Input images: a) and b) are images of cells grown on agarose pads
and c) and d) are cells grown on PDMS microfluidic device.

C. Image Preprocessing

The input phase contrast images are of size 1360 × 1024
pixels and contain the cell colony as well as some regions of
the microfluidic device. We aligned the image sequences based
on image cross correlation to account for the stage reposition-
ing inaccuracy that occurred when cycling though different
traps during the image acquisition process. The aligned images
were manually cropped to the region containing cells. Since
the stack was aligned, manual selection on the first frame was
enough to crop the entire image stack. For the fluorescent
dataset, since the cells are brighter than back-ground, we
inverted the input raw image and performed all steps as
described below.

D. Curvature Based Contrast Enhancement

In the input phase contrast images, the E. coli cells appear
as dark rod-shaped objects on a brighter background. The
E. coli colony is tightly packed so that the intensity values
between the cells are often similar to those inside the cells,
and it is common to see high intensity regions inside cells,
which implies that any purely intensity based approach for
segmentation will result in erroneous output. To overcome this,
we tried the separation of principal curvatures of the intensity
surface [17]. The regions were thereafter separated based on
the minimal curvature as described below.

The curvature was found using techniques from differential
geometry [17]. Consider a 1D case, where r is a curve as
shown in Fig. 2 and p and q are two points on the curve. We
know that the gradient of the curve with respect to the arc
length gives the tangent, t, at that point, i.e., t = r′. The rate
of change of tangent direction as we move along the curve
is the curvature of the curve, i.e., t′ = kn, where n is the
unit normal vector to the curve, that is perpendicular to the
tangent, and k is the curvature. So we have r′′ = kn. This
shows that the curvature at a point is the second derivative of
the curve at that point. The sign of the curvature is determined
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Fig. 2. Principal curvature estimation: kp is the curvature at point p with
negative value and kq is the curvature at point q with positive value for the
curve r.

by whether the slope is increasing or decreasing. Here we can
see that it is negative in the maximum point and positive in
the minimum point as shown by kp and kq (arrow pointing
upward as positive and arrow pointing downward as negative).
We extended the same idea to the 2D case. Consider a gray
scale image as a surface in 3D with (x,y) being the spatial
coordinates and I(x,y) being the gray level intensity at that
particular spatial location. Following a similar convention as
for the 1D case, the image surface is assumed to be continuous
with partial derivatives existing at least to order 2 [17]. Here,
we first made the image smooth by convolving it with a
Gaussian kernel. We set the standard deviation of the Gaussian
to 1.4 pixels, which is approximately 1/10th the width of the
E. coli cells, found experimentally.

A particular point on the image surface has an infinite
number of curves passing through it. Out of all these curves
there are two curves that are particularly interesting. They
are the curve with maximum curvature and the curve with
minimum curvature, which are orthogonal to each other. These
curvatures are equal to the eigenvalues of the Hessian matrix
[18]. The Hessian is the second derivative matrix of the image,
calculated for every pixel, which is created as

H =

[
Ixx Ixy
Ixy Iyy

]
where Ixx and Iyy are the 2nd derivatives of the image taken
in the x- and y-directions, and Ixy is the derivative of the
image taken first in the x-direction and then in the y-direction,
using discrete approximations [19]. The eigenvalues can be
calculated as follows

k1,2 =
trace(H)±

√
trace(H)2 − 4× det(H)

2
(1)

Here, k1 and k2 are the principal curvatures with k1 < k2.
In phase contrast images of E. coli, consider two rod shaped
cells lying parallel to each other, the cells are dark and
the region between the cells is bright. When we calculate
principal curvatures in the region between the cells, one is
perpendicular to the major axis of the cell and its curvature
is negative, and the other one is parallel to the major axis of
the cell with zero or small value near zero curvature (positive
or negative depending on local intensity values). Taking the
lowest value of the two gives the curve with the greatest

curvature magnitude in the negative direction at that point. In
this way we can enhance the contrast of the image in bright
background regions between cells while avoiding enhancing
variations inside the darker cell regions, as shown in Fig. 3.

(a) (b)

(c)

Fig. 3. Curvature-based contrast enhancement: a) Original input image, b)
Curvature based contrast enhanced image and c) Plot showing pixel values
from the same row from (a) (red line), and (b) (blue line). Note that the plotted
pixel values from (a) in (c) are inverted for display.

E. Object Segmentation

We used the presented curvature-based enhancement step to
enhance the contrast in the images. Next, we segmented out
the cells using a repeated thresholding approach. The contrast-
enhanced image is an image with floating point values. In
order to make the threshold computation easier, we normalized
the image and quantized it to 256 intensity levels. A single
threshold value was not sufficient to separate all individual
cells, and watershed segmentation resulted in ambiguities in
the positioning of the edges of the cells. We therefore used
multiple thresholds and prior knowledge about the cell area
and the cell shape, in the form of major and minor axes
lengths, to filter out the cells from background regions.

For each threshold level, the image was labeled and each
object fitted with an ellipse. The ellipse parameters are found
using moments [20] as follows. We create a matrix M such
that,

M =

[
m02 m11

m11 m20

]

major axis = 4×
√

λ1
m00

(2)

minor axis = 4×
√

λ2
m00

(3)

λ1 and λ2 are eigenvalues of moment matrix M , mpq is
the pqth central moment in x and y respectively. m00 is 0th

central moment (area of the object).
The ellipse parameters of individual objects were analyzed

as follows. The objects were filtered based on the major and
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minor axis length to remove very large and very small regions.
The major and minor axes lengths are given as parameter to
the algorithm. For each object, a weight was calculated as
follows and assigned to the object.

weight = 0.5× residual area ratio + 0.5× convexity (4)

where the residual area ratio (RAR) is found as

RAR =
min(area, ellipse area)
max( area, ellipse area)

(5)

and convexity

convexity =
area

area of convex hull of object
(6)

The ellipse area is found as

Ellipse area =
π × major axis × minor axis

4
(7)

We have already seen that the cellular regions exhibit higher
intensity values and edges between cells exhibit lower intensity
values on the contrast-enhanced image. Thus we made the
assumption that the histogram is bimodal, with the largest peak
representing objects and background pixels, while the smaller
peak represents edges.The histograms of the contrast enhanced
images are shown in Fig. 4. From a computational point of
view it is time-consuming to apply a threshold at all the 256
intensity levels and analyze the size and shape of every binary
object present in the image. It is also clear that if the threshold
is too low then most of the objects merge together and if
threshold is too high then the objects are fragmented. So we
wanted to limit the threshold levels applied. We experimentally
found that searching for a locally optimal threshold within
10 intensity levels around the mean intensity was sufficient
to correctly threshold most cellular regions. This value may
change with other datasets but was found giving satisfactory
results for the 4 datasets used here. This threshold is evaluated
later in the paper.

For each threshold, weight values were assigned to every
object in the range [0, 1], resulting in a stack of segmentation
results. We reduced the stack by a maximum projection, i.e.,
find the maximum value for every (x, y) coordinate through
the stack found, thus keeping the per-object segmentation
result with the highest weight. This projection image was
thresholded and holes were filled to obtain the final object
segments. We found the threshold experimentally and set
it to 0.75. The stability of the threshold is evaluated in a
later section in this paper. All objects below this threshold
were considered to be image background. Fig. 5 shows two
examples of weighted thresholded images, max projection of
segmentation stack and the hole filled and labeled image. The
remaining objects were subjected to further intensity based
filtering to remove artifacts and smoothing to remove sharp
corners as described below.

F. Object Filtering

Our object filtering is based on the assumption that the in-
tensity distribution of the cells follows a Gaussian distribution,

(a) Phase data 1 (b) Phase data 2

(c) Phase data 3 (d) Fluo data

Fig. 4. Histogram of contrast enhanced images: a) and b) show each of
the histograms for phase data 1 and phase data 2 with a zoomed-in region
to visualize the local minima in the histogram. For c) and d) the bimodal
distribution of the histograms can be seen without re-scaling.

(a) Threshold 1 (b) Threshold 2

(c) Max projection (d) Segmented cells

Fig. 5. Intermediate outputs of segmentation: a) and b) show example of
weighted images from the segmentation stack, c) Max projected image, d)
Output after thresholding and hole filling of (c). In (a), (b) and (c) the colors
represent weight values ranging from 0.0 to 1.0 (color map is scaled for
illustrations as shown in the color bar) and in (d) color is to distinguish
among different segments.

and that outliers are debris. Approximations of the mean and
the standard deviation of the distribution were computed as
follows. For each of the segmented cells, the median intensity
corresponding to the original image is found and stored in a
list. The list of intensities was normalized. From the list of
normalized intensities, the histogram of intensity is found and
interpolated using spline interpolation [21]. On the interpolated
distribution, we find the position of the peak, use it as mean,
and the half maximum of the peak on both sides of the peak
using linear search. We find the full width at half maximum
(FWHM) by the difference of the right and left half maximum.
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TABLE I
PARAMETERS SET FOR MORPHOLOGICAL SNAKES

Parameter Value
Alpha 1000
Sigma 4.2

Smoothing 3
Threshold 25
Balloon -1

Number of iterations 2

We estimated the standard deviation [22] as follows

Estimated standard deviation =
FWHM

2
√
2 log(2)

(8)

We introduced a threshold, 4 standard deviations above the
mean intensity of the obtained distribution. All objects that
had values less than this threshold were considered for further
processing. We performed the intensity based filtering on all
images in the sequence separately to compensate for variations
in image intensity.

G. Object Smoothing

Object smoothing is required only for such applications
where the segment accuracy is more important than speed of
execution. The output objects from the filtered segmentation
sometimes have sharp corners. To smooth the borders we
applied morphological geodesic active contours [23], which
is a fast level set based contour evolution method. In this
method, level set evolution is done using dilation and erosion
of binary images. We set the parameters as shown in Table
I and used the intensity normalized contrast-enhanced image,
i.e., the low eigenvalue image, as reference image for the level
set evolution. All the parameters have the same meaning as
mentioned in [23]. Each segment was smoothed individually
to avoid potential merging of segments.

H. Segmentation Evaluation Approach

We evaluated the segmentation performance on a per-cell
basis using recall, precision and the harmonic mean of the
two, referred to as the F-score on a per object basis. These
were found as follows

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F-score =
2× Precision×Recall

Precision+Recall

where TP is true positive pixels, FP is false positive pixels
and FN is false negative pixels.

To have a fair comparison of the evaluated methods, all
objects touching the image boundary were removed. The exact
positioning of the segmentation outlines may vary between
different segmentation approaches, and it is not straightforward
to say if a ’tight’ or a more ’loose’ fit of an outline is
more correct. This may introduce bias to the quantification

of precision and recall. We therefore adjusted the manually
curated ground truth using simple dilations or erosions to make
the area distribution of the cells in the ground truth as similar
as possible to that of the output segmentation masks. In the
label-based dilation, a square structuring element of size 3×3
was considered and the center pixel was assigned the label
with maximum occurrence, excluding the background pixels.

After this adjustment of the ground truth image an object
based segmentation evaluation was done. To evaluate the
segmentation result per object, we created a list entry for
every object. We thereafter considered each segment from the
ground truth and found the segment with maximum overlap in
the segmentation result from the corresponding algorithm and
marked the corresponding entry in the list as visited. For every
segment in the ground truth we find pixels that overlap with the
associated segment from the respective algorithm and consider
those pixels as true positive. Pixels in the ground truth segment
that are not overlapping are considered as false negatives and
similarly those segments not overlapping with the ground truth
are considered as false positives. This was done for all the
segments in the ground truth image. The ground truth segments
that were not associated with any detected segment were
considered as false negatives, and similarly, detected segments
that failed to be associated with any of the segments from
the ground truth image were considered as false positive cells.
This ensured that we account for missing cells as well as false
detections. We repeated this process on all the segmentation
results and created a histogram of the performance metrics at
100 bin levels.

I. Cell Tracking

The segmented cells were tracked over time and cell
lineages were created by a batch tracking algorithm that
uses iterative application of the Viterbi algorithm [13]. The
algorithm adds one cell at a time to the existing cell tracks
in such a way that the probability of the tracks obtained is
maximized. The algorithm uses the entire image sequence to
create a track, thereby improving the tracking accuracy. In
addition to tracking cells, the algorithm can handle events like
cell division, cell death, cells entering and leaving the field of
view, multiple cells present in a single segment, and cells that
are missing in some frames. The basic parameters that were
set for tracking are shown in Table II. The algorithm normally
uses probabilities of cell migration events that are estimated
by assuming that the centroid of a cell in one frame follows
a Gaussian distribution centered on the centroid of the cell
in the previous image. This does however not work well for
rod shaped bacteria, as the centroids of adjacent bacteria can
be very close to each other. To overcome this problem, we
replaced the migration probability with the Jaccard similarity
index of the binary masks of the segmented regions in the
two images. The Jaccard similarity index is computed as the
number of pixels in the intersection of the regions divided by
the number of pixels in the union of the regions, and therefore
takes values between 0 and 1.
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TABLE II
PARAMETERS SET FOR TRACKING ALGORITHM

Parameter Value
Probability that a segment contains 0 cells 0.000001
Probability that a segment contains 1 cell 0.93
Probability that a segment contains 2 cells 0

Probability of mitosis 0.20
Probability of cell death 0

Standard deviation of the cell velocity in pixels per frame 20

J. Cell Track Analysis

The tracking algorithm tracks cells over time from the first
frame to the last frame. For our present experiments, we want
to analyze the cell growth over time from the birth of a cell
to its division. Due to noise and the complexity of the dataset,
many tracks are generated, and not all of them are correct.
Rather than keeping all tracks, we try to sort out correct tracks
based on a priori information. Out of all the tracks that were
generated, we filtered out only those tracks that start with a
cell division and end with the next cell division. We used an
area measure to confirm the cell division at the beginning and
at the end of each track. At the beginning of the track we
check if the area of the parent cell is within a tolerance level
to that of the sum of the areas of the current cell and its sibling
cell. Similarly, at the end of the track, we check if the area
of the current cell at the end of the track is within a tolerance
to the sum of the areas of the child cells. The error for parent
and child cells are calculated as follows

child error =
∣∣∣∣2−{ final area

children area
+

children area
final area

}∣∣∣∣
parent error =

∣∣∣∣2−{ final area
siblings area

+
siblings area

final area

}∣∣∣∣
If both of these values were within a tolerance of 1%

(found experimentally), we considered that track as a candidate
track. Due to errors in the detection of cell divisions, and
sudden movement of cells, some tracks, even though satisfying
the above criteria, may not be representing the growth of a
particular cell and the resulting tracks jumps from one cell to
another. We therefore included an additional evaluation of the
filtered tracks, as described below.

K. Evaluation of Track Quality

To analyze the growth of a cell, it is sufficient to analyze the
increase in major axis length of the object, since the widths
of all the cells are nearly constant. Cells grow more or less
exponentially over time, meaning that the major axis length
of a cell is approximately a straight line in logarithmic scale.
To further evaluate the correctness of a track, we evaluated
the noise level of this line using RANSAC [24] line fitting.
Next we found the mean of the absolute difference of the
estimated line (in logarithmic scale) and the observed major
axis values. All the tracks were sorted in increasing order of
this mean error value, and the tracks that had errors less than
a specific threshold were considered for further post-tracking

segmentation correction as described below. This threshold
was chosen based on the application and the acceptable error
tolerance. In this experiment we set the value to 3 pixels.

L. Post-tracking Segmentation Correction
After the final quality control, some of the high-quality

tracks may still contain single frame outliers where the
segmentation algorithm has failed. We corrected for such
segmentation errors using the assumption that the cells grow
very little from one frame to the next frame. We considered
a segment as erroneous if the absolute difference between the
major axis length of the segment and the estimated major
axis length by RANSAC fitting was above 10 pixels (found
experimentally). To replace the erroneous segmentation result,
we found the segment from the previous and next image. Then
an average segment out of the two was calculated and placed in
the image, as illustrated in Fig. 6. To find the average segment,
we needed to find three things; 1) average position, 2) average
orientation and 3) average shape. Average position was found
as the mean position of the centroids of the two segments while
average orientation was found by the average orientation of
the major axes of the two segments. Then, to find the average
shape, we first rotated both the segments such that their major
axes were parallel to the x-axis and the centroids located at
the middle of the image. Then signed distance transforms
were performed on both these images. Finally, the average
image was obtained as the average of the two signed distance
transforms. This final averaged segment was placed in the
erroneous frame replacing the erroneous segment.

(a)

(b)

Fig. 6. Post-tracking segmentation correction: a) Track showing cell growth
without any error and b) Track with single frame error and corresponding
corrected frame.
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III. RESULTS AND DISCUSSION

A. Segmentation Results

We compared the segmentation results of our Curvature
Based Approach, referred to as CBA, with those of Mi-
crobeTracker [5] and MAMLE [7]. As it has already been
shown that MAMLE outperforms Schnitzcells [6] under many
circumstances, we did not compare against this approach.
We evaluated the segmentation performance on three E. coli
phase contrast images: one from the MicrobeTracker example
data, one from Schnitzcells (which was also used by the
authors of MAMLE), and one from our own dataset. The
MicrobeTracker and Schnitzcells examples are obtained for E.
coli cells growing as largely isolated cells or micro-colonies
on agarose pads whereas our dataset shows densely growing
cells in PDMS microfluidics. It is important to note that neither
MicrobeTracker nor Schnitzcells was developed to handle data
of the type we have in our microfluidics experiments and that
relative performance can vary depending on specific imaging
conditions. We also evaluated the performance on one fluores-
cent image from our own dataset. Here, we inverted the flu-
orescence microscopy images and then processed them in the
same way as the phase contrast images. We manually created
ground truth for all the images. Selected regions of raw images
and their corresponding ground truths are shown in the two top
rows of Fig. 7. Our proposed method outputs the segmentation
result as a binary image while the MicrobeTracker output is in
the form of boundary coordinates. Therefore, special care was
needed when performing the evaluation. The contours of two
nearby cells detected by MicrobeTracker overlapped in some
cases, and to avoid considering the overlapping regions as new
segments we evaluated one contour at a time, converting each
contour to a binary image by dilation followed by hole filling
and erosion.

We also wanted to evaluate the improvement in performance
of CBA with and without intensity filtering and contour
smoothing, resulting in a total of five algorithms; 1) CBA,
2) CBA including intensity based filtering, 3) CBA including
intensity filtering and smoothing, 4) MicrobeTracker, and 5)
MAMLE. The results are as shown in Fig. 7.

Fig. 8 shows that the area distributions are maintained
prior to evaluation of segmentation results as discussed in the
methods section. Evaluation results are shown in Fig. 9. To
summarize the comparison of the segmentation algorithms, we
tested a range of thresholds on the F-score to quantify what
proportion of the cells was correctly identified at different re-
quirements on achieved F-score. We finally found the average
F-score for each of the methods and the results are as shown
in Table III. The results show that the performance of our
method is comparable to that of the state-of-the-art methods.

The performance of CBA was only marginally improved
when adding intensity based filtering and contour smoothing.
However, the contour smoothing may be necessary for ap-
plications where exact edge positioning is crucial, e.g., when
relating the position of sub-cellular signals to the cell edge.

Processing time was reduced by limiting the number of
thresholds tested when searching for a locally optimal thresh-
old. We have therefore evaluated the performance of our

Fig. 7. Zoomed-in segmentation results: phase data 1 is from the Micro-
beTracker dataset, phase data 2 from Schnitzcells dataset, phase data 3 and
fluorescent data from our dataset. Phase data 1 and 2 are from experiments
on agarose pads whereas phase data 3 and fluorescent data are from a growth
medium in a PDMS device.

TABLE III
AVERAGE F-SCORE PERCENTAGE FOR DIFFERENT METHODS ON 4

DATASETS.

Phase
data 1

Phase data 2 Phase
data 3

fluo data

CBA 87.49 78.64 85.77 85.56
CBA+Filt 86.95 78.64 87.56 85.82

CBA+Filt+Smooth 86.83 78.63 87.63 84.38
MicrobeTracker 79.49 71.29 62.39 55.03

MAMLE 84.90 82.00 81.95 81.71

algorithm in relation to the number of threshold levels tested.
We calculated the average F-score while varying the number of
tested threshold levels (around mean) from 2 to 20. The result
is as shown in Fig. 10. The results shows that the performance
is nearly stable around 10 for densely packed cells while
parameter tuning is required for datasets with sparse cells. In
Fig. 10, the average F-score for phase data 1 dropped because
of false positive detections when the window size was too
large.

We also evaluated the stability of the threshold for max
projected images by varying the threshold from 0.5 to 1.0
and found average F-scores for segmented objects for the 4
datasets. The result shows that the average F-score is stable
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(a) (b)

(c) (d)

Fig. 8. Area distribution of segmented cells for a) phase data 1, b) phase
data 2 c) phase data 3 and d) fluorescent data.

around the region of the threshold at 0.75 and is as shown in
Fig. 11.

Though our method did well on 4 datasets there where some
instances where our method failed to find the cells properly.
This occured due to the parameter limits that we use in our
study. It is possible that some irregularly shaped cells or
unusually long cells may be missed in the detection. Two such
examples are shown in Fig. 12

B. Run Time Evaluation

Our algorithm, CBA, was implemented in Python as a
multithreaded program. We compared the execution speed of
the methods on the four datasets. The time taken by each
method on the four images in the dataset is shown in Fig.
13. The experimental results show that the execution speed
depends on the number of cells present in the image. It was
found that our method, CBA, is an order of magnitude faster
than the state-of-the-art methods. The results show that CBA
is 10 times faster than MicrobeTracker and 8 times faster than
MAMLE on average. We performed the speed evaluation on a
laptop with a dual core, 2.7GHz, Core i7 processor and 16GB
RAM running on Windows 7.

C. Tracking Results

To further evaluate the usability of the segmentation results
produced by our proposed method, we tested its performance
on a large time-lapse experiment. We applied our segmentation
algorithm to time-lapse images from a dataset comprising
500 images with approximately 250 cells per image. 500
frames correspond to 250 min in real time. Cell tracking was
done using the Viterbi algorithm as described in the Methods
section, and we obtained a total of 10259 tracks. The tracks
were then subjected to filtering to extract candidate tracks. The
track analysis stage found 1529 tracks satisfying the criteria

(a)

(b)

(c)

(d)

Fig. 9. Cumulative % of cells above the particular F-score for a) phase data
1, b) phase data 2, c) phase data 3 and (d) fluorescent data.

of having cell division at the beginning and also at the end.
Since we consider cell division at the start and end of the
track, essentially all tracks including the first or last 30 min
were discarded. All the 1529 tracks were sorted in increasing
order based on RANSAC fit error, as shown by the dashed
line in Fig. 14 (note the logarithmic scale on the fit error). We
further searched for and corrected segmentation errors in the
tracks. The solid line shows the improved result, where a total
of 1238 tracks fell below the 3 pixel error threshold prior to
track correction, and 1274 fell below the threshold afterwards.
In frames 100 to 400, 40% of the identified cells are assigned
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Fig. 10. Plot showing the stability of number of threshold levels required for
4 datasets, which is nearly constant around 10 for datasets with dense cells.

Fig. 11. Plot showing the stability of threshold on max projected segmented
stack for 4 datasets, which is nearly constant around the region of 0.75.

(a) Image 1 (b) Image 2

(c) Overlay 1 (d) Overlay 2

Fig. 12. Missing cells due to limits of parameter setting: a) input image with
unusually longer cells with c) the segmentation result and b) shows an E. coli
cell with irregular shape and the corresponding segmentation result in d). Red
arrows show the missing cells.

to a track.

D. Comparison of Growth Rate at Different Treatments

The second experiment included in this work was aimed
at testing if the proposed method could be used to find
differences in the growth rate of E. coli cells in different
media. The first dataset was obtained from E. coli cells using
glycerol as medium and the second dataset was obtained using
glucose as medium. We wanted to know how fast the cells

Fig. 13. Execution times of MicrobeTracker, MAMLE and CBA on four
datasets.

Fig. 14. RANSAC fit error of the major axis length in cell tracks, for
the original segmentation and the error corrected segmentation, shown in
logarithmic scale.

grow and divide in these two media. We found that the growth
rate measured as the slope of the RANSAC fitted line was
1.2 × 10−2 ± 2.1 × 10−3 pixels/frame in logarithmic scale
(mean ± standard deviation) for cells in glucose (red) and
9.2× 10−3 ± 1.5× 10−3 pixels/frame in logarithmic scale for
cells in glycerol (blue), showing that cells in glucose grow
faster than those in glycerol. There are some cells that grow
faster in glycerol and cells that grow slower in glucose as can
be seen in Fig. 15.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we developed a fast and robust E. coli cell
segmentation method that can be used as input for tracking
cells in time-lapse microscopy images. We also showed that
our method works better than the state-of-the-art methods in
terms of speed with comparable accuracy. This is particu-
larly important when analysing data from the increasingly
popular microfluidic experiments where supply of nutrients
and crowding by cells no longer limits the extent of the
experiments. Faster and accurate algorithms are needed to
analyse the data on a similar time scale as the acquisition
time. Given the possibility to process much larger data sets
and deeper cell lineage trees, we can start addressing a new
level of biologically relevant questions such as how gene
expression in one generation influences the fitness of the
offspring several generations later or how cell to cell variation
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(a)

(b)

(c)

Fig. 15. Comparison of growth rates: a) Change in major axis length over time
for two datasets with cells in glucose (red) and glycerol (blue). b) Histogram of
slope found by RANSAC line fit for two datasets. (c) A sample lineage of cells
grown in glucose(raw data in red and RANSAC in yellow) and glycerol(raw
data in blue and RANSAC in green).

in growth rate depends on availability of nutrients, antibiotics
and cell to cell interactions. Since small differences in growth
rate can lead to large differences in biological fitness due to
exponential amplification over generations, it is particularly
important to have robust and automatic ways to segment cells
and determine growth rates, such that the results from two
different experiments not mainly depend on parameter tuning.
Here we have shown that it is possible to obtain such results.

In the future, we would like to speed up the presented algo-
rithm further and include sub-pixel precision in segmentation
results with possible GUI option.
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