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The multistep character of transcription, translation, and protein
modification inevitably leads to time delays between sensing gene
regulatory signals and responding with changed concentrations of
functional proteins. However, the interplay between the time-
delayed and the stochastic nature of gene regulation has been
poorly investigated. Here we present an extension of the linear
noise approximation which makes it possible to estimate second
moments—variances and covariances—of fluctuations around sta-
tionary states in time-delayed systems. The usefulness of themeth-
od is exemplified by analyzing two ubiquitous regulatory motifs.
In the first system,we show that there is an optimal combination of
transcriptional repression and direct product inhibition in deter-
mining the activity of an enzyme system. In particular, we demon-
strate that direct product inhibition is necessary to avoid
deleterious fluctuations in a system when the gene regulatory
response is delayed. The second system is an anabolic motif where
the substrate fluxes are balanced by time-delayed regulation
responding to the substrate concentrations. The extended linear
noise approximation makes it possible to show analytically that
increased association rate between the substrates leads to a lower
product flux because of increasing unbalance in substrate pools.

biochemical networks ∣ intrinsic noise

The wiring and dynamics of intracellular biochemical networks
govern the cells’ functions. It is however not clear, a priori, at

which level of detail the interactions need to be modeled to cap-
ture the relevant properties of the systems, that is, the properties
that contribute to the evolutionary fitness of the organism. In
some cases, chemical fluctuations should be considered (1). In
other cases, average properties do not depend on the fluctuations
and a deterministic mean-field treatment suffices (2). In some
cases, spatial considerations are necessary, but often diffusion
is fast compared to the timescale of the reactions and there is
no significant spatial correlation between reaction events. Some-
times genome scale networks are considered when trying to map
the genotype to the phenotype (3), but often it is meaningful to
analyze properties of commonly reoccurring subsystems (motifs)
in isolation (4). Even for small motifs with a limited number of
components, it is often necessary to further reduce the state
description to capture the relevant kinetics in a comprehensible
model. For example, it is often motivated to replace all the indi-
vidual states an RNA polymerase goes though when it transcribes
a whole gene with a single state. However, the time from initiating
to completing transcription is in this case not exponentially dis-
tributed as it would be for a single-step process; instead, it may
have a relatively narrow distribution that is better approxi-
mated by a fixed time delay. The framework for analyzing
time-delayed deterministic systems with ordinary differential
equations (ODEs) is well worked out (5). However, when we also
need to consider the stochastic aspects of chemical reactions
there are essentially no straightforward methods for analysis
and one often has to resort to Monte Carlo simulation (6–8).
In this paper, we will introduce a method for considering the com-
bined effects of noise and time-delayed regulation in the analysis
of small kinetic motifs. To put the analysis into biological context,

we specifically study two small, but ubiquitous, systems: (i) feed-
back controlled enzymatic activity (CEA) and (ii) flux-coupled
dimerization (FCD).

Models
Feedback Controlled Enzymatic Activity.This motif is part of a linear
enzymatic cascade where an enzyme E synthesizes a product X
that is used as a substrate for an other enzyme E2. When E tries
to keep E2 close to saturation, the consumption of X is close to
zero order and there will be very large stochastic fluctuations in
the concentration of X unless the activity of E is carefully
regulated (9). Such regulation is commonly mediated through
the concentration of X that reduces its own synthesis by direct
product inhibition of E and through indirect transcriptional
repression of the expression of E through an allosterically
activated repressor (10). The motif is characterized by the
following reactions:

S !
Ekcat

1þðx∕KI Þ X !
Vmax

1þðKM ∕xÞ
P

∅ !
α

1þðxτ∕KRÞn
E →

βE ∅

where the synthesis rate of E at time t is regulated by the concen-
tration of X at time t − τ, i.e., xτ. It is assumed that the concen-
tration of substrate for E as well as the concentration of E2 are
constant. To keep things relatively simple, we will further assume
that the dynamics in E and X are slower than the timescale for
equilibration binding of enzymes with substrates and products as
well as that of repressor binding kinetics.

Control accuracy. The task for the control system is to maintain a
stable concentration even when E2 is near saturation x > KM and
large zero-order fluctuations are expected for a nonregulated
system (9). For this reason, we simply define the control accuracy
of the feedback regulation as the inverse Fano factor

ΨCEA ¼ 1

FX
¼ hXi

σ2X
; [1]

which will have a low value (≪1) if x fluctuates wildly. If the
fluctuations display Poissonian statistics, Ψ ¼ 1. Therefore, Ψ ≥
1 is a measure of an efficient regulation and thus a good control
accuracy.

Throughput. When feedback regulation is used to reduce noise
by direct product inhibition, the activity of the enzymes are
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compromised, which infers a cost of the regulation in terms of
reduced flux. The throughput is therefore defined as the flux
through the system compared to the maximal flux (¼Ekcat),

ΦCEA ¼
�

Ekcat
1þX∕KI

∕Ekcat
�
¼
�

1

1þX∕KI

�
: [2]

Flux-Coupled Dimerization.The second motif is a flux-coupled ana-
bolic reaction system, where two species, X and Y , are indepen-
dently synthesized and but stoichometrically consumed in a
two-substrate reaction (1, 9), i.e.,

∅ !α∕ð1þðxτ∕KRÞnÞ X →
βx ∅

∅ !α∕ð1þðyτ∕KRÞnÞ Y →
βy ∅

X þY !ϵxy P

Here, X and Y can be two metabolites in an anabolic pathway, an
mRNA (11) and its antisense RNA (12, 13), two proteins that
form a heterodimer, etc. For simplicity, the two-substrate reac-
tion is taken to be a simple second-order association process.
However, many types of unsaturated catalyzed reactions would
give the system the same properties as long as the reactions
are driven far from equilibrium such that they can be considered
irreversible. The major consumption pathway of X and Y are
through the dimerization reaction at rate ϵxy but there are also
nonproductive losses through first-order degradation or dilution
at rate β. In order to balance the synthesis of X and Y , the synthe-
sis fluxes are feedback inhibited in response to the respective X
and Y pool. For example, if X and Y are two amino acids that are
synthesized by a cascade of biosynthetic enzymes and consumed
in protein synthesis, their synthesis will typically be inhibited at an
early state of the enzymatic cascade by the end product, the ami-
no acid itself (10). Or, if X and Y are ribosomal proteins, they will
feed back on their own translation when more is produced than
what can be used in ribosomal assembly (14). In either case, there
will be a time delay between the moment when the control system
senses the change in the pool and when the synthesis flux is chan-
ged. The feedback is here simply modeled with sigmoidal repres-
sion function with sensitivity n responding to the time-delayed
signals. The current synthesis rates of X and Y are thus regulated
by respective concentrations xτ and yτ at time t − τ. The motif and
the parameters connected to the different processes are
illustrated in Fig. 1.

Control accuracy.The goal of the feedback regulation is to balance
the pools such that the investment in substrates X and Y is used
for production of P instead of losing them through the decay
pathways. Therefore, the control accuracy is given by the ratio
of the actual product flux ϵhXY i and the maximally possible flux
(¼ϵhXihY i) given a fixed total investment in X and Y
(¼hXi þ hY i).

ΨFCD ¼ ϵhXY i
ϵhXihY i ¼

hXY i
hXihY i [3]

Here, 0 < Ψ < 1, where 1 corresponds to a perfect balance
between the X and Y pools.

Throughput. The feedback control of the FCD motif can be tuned
to maintain a balanced concentration of the two components at
the cost of limited throughput, which is defined here as the
product flux divided by the maximal product flux

ΦFCD ¼ ϵhXY i
α

[4]

Methods and Results
Our starting point in the analysis is the chemical master equation
(CME) (15), which describes the probability that the system is in a
particular state at a certain point in time. The CME can be
expanded in powers of the system volume (Ω). The first-order
expansion results in a set of ODEs describing the average rates
of change in the macroscopic limit, the reaction rate equations.
They accurately describe the kinetics in macroscopic well-stirred
systems without time delays (15). However, if the reaction rates
depend nonlinearly on the state of the system, the deterministic
mean-field solution does not necessarily give an accurate descrip-
tion of the average behavior in a system of limited volume. Any
conclusion drawn from the macroscopic analysis may therefore
need to be justified in terms of a more detailed description that
considers the stochastic, discrete nature of chemical reactions.
We will therefore start the analysis of the motifs with a descrip-
tion of their expected macroscopic properties and then comple-
ment this analysis with a characterization of their stochastic
properties that will be necessary to evaluate the control accuracy
of the feedback systems.

Throughout the text, the Hill coefficient n describing the
cooperative feedback is a positive number in the theoretical parts
but the discussion and the explicit calculations for the figures are
restricted to n ¼ 2.

Mean-Field Dynamics for Time-Delayed Feedback. The macroscopic
dynamics of the CEA motif are given by two ODEs. They can be
written in nondimensional form by rescaling the concentrations
x̂ ¼ x∕KM , Ê ¼ Ekcat∕KMβ, and time t̂ ¼ βt. This leaves us with
four parameters σ ¼ ðαkcat∕βÞ · ð1∕KMβÞ, K̂R ¼ KR∕KM , K̂I ¼
KI∕KM , and V̂max ¼ Vmax∕KMβ. Thus concentrations of x are gi-
ven in number of KM , time is given terms of the decay time of E,
and the units of E are defined such that Ê ¼ 1 makes a concen-
tration of KM during its lifetime (1∕β). The ODEs with the
rescaled variables and parameters are

dÊ

dt̂
¼ σ

1þðx̂τ∕K̂RÞn
− Ê

dx̂

dt̂
¼ Ê

1þ x̂∕K̂I

−
V̂max

1þ 1∕x̂
: [5]

Because we want E2 near saturation, x̂ ¼ x∕KM > 1, the station-
ary solution x̂0 of Eq. 5 should satisfy x̂0 > 1. We thus fixate
x̂0 ¼ ξ̂ > 1, or equivalently, x0 ¼ ξ > KM . By doing so, we can
compute σ from the stationary solution for each combination
of K̂R, K̂I , and V̂max. The dynamics of the FCDmotif can likewise

Fig. 1. (A) Feedback controlled enzymatic activity, the CEA motif. The
enzyme E is produced in a multistep process covering τ s. The synthesis of
E is transcriptionally repressed at high concentrations of its product X, which
also inhibits the enzyme’s activity directly. (B) Flux-coupled dimerization, the
FCD motif. X and Y are produced in multistep processes covering τ s. The
synthesis of each molecule is negative feedback inhibited to balance their
concentration. The consumption is stoichiometrically coupled through the
making of P.

8172 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0913317107 Grönlund et al.



be written in nondimensional form by the scaling x̂ ¼ x∕KR,
ŷ ¼ y∕KR, and time as β, t̂ ¼ βt. We get the rescaled synthesis rate
σ ¼ α∕KRβ and association rate κ ¼ ϵKR∕β and the ODEs are

dx̂

dt̂
¼ σ

1þ x̂nτ
− κx̂ ŷ−x̂

dŷ

dt̂
¼ σ

1þ ŷnτ
− κx̂ ŷ−ŷ: [6]

In SI Text the stability of the time-delayed motifs is analyzed (5).
In this analysis the eigenvalues of the Jacobians of Eqs. 5 and 6
dictate the time evolution of the system after a small perturbation
from the fixed points. With no delay (τ ¼ 0), both motifs display
one stable fixed point (having real negative eigenvalues of the
Jacobians) for all parameter combinations. If, on the other hand,
τ > 0, both motifs can display sustained oscillations (having
imaginary eigenvalues with zero real part of the Jacobians) if the
delay is sufficiently long. From the fixed point analysis (SI Text),
we plot in Fig. 2 the bifurcation diagram to show the parameter
regions with oscillations. The mathematical criteria for oscilla-
tions are given in the SI Text. Here we simply state that the pro-
duct X for the CEA motif can oscillate even for short time delays
(τ ≈ 1∕β) if transcriptional feedback is strong (KR∕KM < 1) and
direct product inhibition is weak (KI∕KM > 1). The FCDmotif X
and Y will display anticorrelated oscillations for shorter time de-
lays when the turnover of the pools increases in relation to the
feedback inhibition constant, i.e. if α∕KRβ is large. Oscillations
are a signature of bad precision in the feedback and something
both motifs should avoid. To complete the picture, we will focus
on the noise characteristics at stable fixed points in the rest of the
analysis and thus assess the control accuracy of the feedback sys-
tems for all parameter combinations.

Noise Characteristics for Time-Delayed Feedback. The straightfor-
ward way to study the stochastic time-delayed system is to simu-
late trajectories using a slightly modified Stochastic Simulation
Algorithm (SSA) (16), where the delayed events lead to a state
change in SSA after the delayed time (6–8). Because a simulation
follows an individual trajectory, the complete state history is
known and the nonmemoryless aspects of the time-delayed sys-
tem is not a problem, although the stochastic process cannot be
described with an explicit master equation in closed form. The
convergence of the stochastic time-delayed system to a determi-
nistic one is controlled by the volume parameter Ω, the inverse of
which is proportional to a step in concentration due to a discrete
molecular event (SI Text). Simulated stochastic trajectories
(SI Text) confirm the deterministic bifurcation analysis in Fig. 2
in the limit of large Ω. However, for small Ω, the parameter re-
gions where we observe oscillation are expanded due to noise-

induced phase oscillation, similar to those that have been ob-
served previously in biochemical networks (17).

The major drawback of stochastic simulations is that we only
learn something about the system the for the limited number of
parameter values that can be simulated. As a complement, simple
mathematical expressions capturing the relevant parameter de-
pendencies can sometimes be derived through carefully con-
trolled approximations. One popular approximation scheme for
nondelayed (Markovian) stochastic systems is the Linear Noise
Approximation (LNA). The LNA is derived from an expansion
in powers of Ω1∕2 of the chemical master equation (9, 15). In a
steady state, the covariance matrix in LNA is determined by the
size and frequency of jumps from the stationary solution and the
relaxation rate back to the same. Let aðxÞ be the transition rate
vector and S the stoichiometric matrix, such that the steady state x
is the solution of SaðxÞ ¼ 0. The relaxation rates are given by
the eigenvalues of the Jacobian matrix A and the size and
frequency of perturbations by the diffusion matrix V ¼
S diagðaÞST . The steady-state covariance matrix C satisfies
Lyapunov’s matrix equation,

ACþCAT þΩV ¼ 0; [7]

which makes it possible to approximate the covariance and the
noise characteristics from the steady-state solution of the system.

There are no well-established methods for estimating the sto-
chastic properties of time-delayed chemical reaction systems. For
this reason, we have developed an extension of the LNA frame-
work to estimate the impact of time delays at stable fixed points
(SI Text). The method depends on the conditional probability
density function pðx; y; tj~x; ~y; t − τÞ, i.e., the probability that the sys-
tem is in state x; y at time t given that it was at ~x; ~y at an earlier time
t − τ. The delayed ODEs for the mean values are independent of
pðx; y; tj~x; ~y; t − τÞ but additional assumptions are needed for the
covariances. The conditional probability density can be approxi-
mated in two extreme cases:

1. If x; y and ~x; ~y are independent, pðx; y; tj~x; ~y; t − τÞ ¼ pðx; y; tÞ.
This is likely to be a good approximation if τ is large.

2. If τ is zero, pðx; y; tj~x; ~y; t − τÞ ¼ δðx − ~xÞδðy − ~yÞ. The Kroneck-
er delta function δð·Þ is zero everywhere except for the origin
where δð0Þ ¼ 1. This is a good approximation if τ is small.

Next, we assume that pðx; y; tj~x; ~y; t − τÞ can be expressed as a
linear combination of the two extremes with a nonnegative weight
θðτÞ satisfying θð0Þ ¼ 0 and limτ→∞θðτÞ ¼ 1 such that

pðx; y; tj~x; ~y; t− τÞ ¼ ð1− θÞδðx− ~xÞδðy− ~yÞþ θpðx; y; tÞ: [8]

102

103

10−4

101

B
10−4

100

104

1 2 5 10100 102

1 10 100

A

Fig. 2. (A) The bifurcation diagram of the CEAmotif (with V̂max ¼ ξ̂ ¼ 10). (B) The bifurcation diagram of the FCDmotif. In the white areas, bothmotifs display
stable fixed points for any delay and, in the colored regions, stable oscillations for long delays. The color corresponds to the specific delay that for this choice of
parameters gives stable oscillations.
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Given Eq. 8, we can estimate the covariance matrix and all prop-
erties given by second moments, like the Fano factor and the
modified Fano factor (11) (SI Text).

For the CEA motif, the Fano factor can be approximated by

FX ¼ 1þ ~KI

Tþ 1þ ~KI

×
�
Tþ 1þ 2 ~KI

1þ nð1− θÞð1þ ~KIÞ∕ð1þ ~Kn
RÞ

�
[9]

when ξ ≫ KM (when E2 is near saturation). T ¼ Vmax∕ðξβÞ is the
turnover ratio of the product and the enzyme, and ~KI ¼ KI∕ξ and
~KR ¼ KR∕ξ. The turnover ratio can be interpreted as how many
times the X pool can be turned over during the average lifetime of
an enzyme.

For the FCD motif, the modified Fano factor becomes

FX−Y ¼VarðX −Y Þ
2hXi ¼ κx0 þ 2

2ð1þ ηð1− θÞÞ ; [10]

where x0 is the steady-state solution and η ¼
nðκx0 þ 1Þð1 − x0ðκx0þ1Þ

σ Þ. The actual shape of the time-delay func-
tion θðτÞ is unknown and an exact expression may not exist.
Here we let θðτÞ ¼ 1 − e−kτ, which fulfills the asymptotic proper-
ties implying pðx; y; tj~x; ~y; t − τÞ ¼ pðx; y; tÞ þ e−kτðδðx − ~xÞδðy − ~yÞ
−pðx; y; tÞÞ and where k is a system-specific constant, reflecting
the timescale of correlations in the system. In Fig. 3, we plot
the Fano factor of X in the CEA motif and the Fano factor of
the imbalance X − Y in the FCD system as functions of the time
delay τ. The analytical approximations in Eqs. 9 and 10 are
compared with simulated noise levels.

Based on the analysis of first and second moments, we can now
discuss how different feedback strengths (repression and inhibi-
tion) and product formation rates optimize the control accuracy
and throughputs of the motifs. We will here assume that the

system volume Ω and the time delay τ are constraints for the
individual motifs and focus on finding the optimal parameters
ϵ, KR, and KI . These parameters are local in the sense that they
are free to evolve without compromising the performance of
other parts of the cell.

Control Accuracy of the CEA Motif. In controlling the enzymatic
activity by a combination of direct product inhibition and delayed
transcriptional feedback repression, the role of the control system
is to reduce variation in the metabolite concentration. For this
reason, the control systems should avoid parameter combinations
that result in sustained oscillations. These parameters can be
identified already in the deterministic analysis (Fig. 2 and
SI Text). Outside the oscillatory regime, the success in suppression
of intrinsic noise as described by the control accuracy ΨCEA can
be directly calculated by the reciprocal of the Fano factor
(Eq. 10). Although the full expression is relatively simple, we will
zoom in on two important limits. With n ¼ 2 and a limited kτ̂
(no oscillations), we have

ΨCEA

�
≥1 if ~KI ≪ 1 ðfor all T and KRÞ
≈ 1

Tþekτ̂
if ~KI ≫ 1 and ~KR < 1

[11]

The first line represents strong direct product inhibition, and
the second line little or no direct feedback inhibition with strong
transcriptional feedback. The control accuracy of the transcrip-
tional feedback is thus directly related to the turnover ratio T
of the product and the enzyme. When the turnover ratio is high

0 50 100 150

3

3.5

4

0 5 10

4.8

5.2

5.6

A

B

Fig. 3. In (A), the Fano factor showing the fluctuations of molecules X in the
CEAmotif as a function of feedback delay τwhen KI ¼ 20, KR ¼ 40, Vmax ¼ 1,
and ξ̂ ¼ 10 for a size Ω ¼ 1; 000. The solid line is the LNA estimation using
k ¼ 0.05. In (B), the modified Fano factor showing the imbalance of mole-
cules for the FCD motif with σ ¼ 1, κ ¼ 100 and size Ω ¼ 1; 000. The solid line
is the LNA estimation using k ¼ 1.
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Fig. 4. Control accuracy of the CEA motif with a turnover ratio of T ¼ 0.01
calculated using LNA, (A) with no time delay and (B) with a time delay τ ¼
50∕β (k ¼ 0.02). Stochastic simulation of the CEA motif with the same turn-
over ratio as A and B, again with no delay (C) and with a delay τ ¼ 50∕β (D). In
(E), a stochastic simulation with turnover ratio T ¼ 1 and delay τ ¼ 1∕β. The
dashed line shows the bifurcation separating sustained oscillations from non-
oscillatory solutions in the mean-field approximation. In (F), the throughput
is plotted as a function for increasing KI (decreasing inhibitory feedback). In
the simulations, Ω ¼ 1; 000 and in all panels ξ̂ ¼ 10 and n ¼ 2.
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(T > 1), the response in the transcriptional regulation which
operates at a timescale 1∕β is slow compared to the turnover
of the X pool and it loses its precision. In this situation, direct
product inhibition is needed to suppress fluctuations and its
contribution to the control accuracy is given by moving from
the second to the first line in Eq. 11.

On the other hand, if the turnover ratio is small (T < 1), the
transcriptional feedback is sufficiently fast to obtain a high con-
trol accuracy and direct product inhibition will only improve the
control accuracy marginally at the cost of a reduced throughput
(Fig. 4F). If the product pool is slowly turned over (T < 1), direct
product inhibition is therefore only useful when transcriptional
feedback is delayed. In Fig. 4, we display the control accuracy
ΨCEA (Fig. 4 A–E) as a function of ~KR and ~KI with and without
time delay. The first row is the estimation of the control accuracy
using LNA and the second row the measured control accuracy
from simulations. To illustrate how accurately the modified LNA
accounts for the effect of the delay, we use a low turnover ratio
T ¼ 0.01, and in the right column (Fig. 4 B and D) a de-
lay τ ¼ 50∕β.

From the deterministic bifurcation analysis (Fig. 2), we know
that oscillations may occur if the delay is long enough and we
have a strong transcriptional repression. This is shown in Fig. 4E.
The dashed line is the bifurcation separating oscillating from non-
oscillating solutions. Oscillations can however be avoided by
either decreasing the turnover ratio, or increasing the inhibition
feedback. In Fig. 4F, the throughput is plotted as a function of
decreasing inhibition feedback (increasing KI).

Control Accuracy of the FCD Motif. The mean-field analysis of the
FCD motif revealed that the delay may cause reduced control
accuracy to the point that oscillations appear resulting in unba-
lanced X and Y pools. We now move back to the original vari-
ables and discuss control accuracy in these parameters, i.e.,
KR, the feedback strength, and ϵ, the association rate. In this anal-
ysis, the flux α ¼ 1 and the decay β ¼ 1 define the units for con-
centration and time. We calculate the control accuracy in the
vicinity of a stable fixed point from the elements of the covariance
matrix (SI Text), for n ¼ 2:

ΨFCD ≈ 1−
ϵKR

4Ω
: [12]

Here the time delay will not play as important a role to the in-
crease in intrinsic noise as it did for the CEA motif. On the other
hand, we do not have the same freedom in choosing parameter
combinations that avoid oscillations, and therefore there will be a
delicate balance in selecting the correct feedback strength to re-
duce noise yet avoid oscillations. The LNA holds well for volumes
Ω > ϵKR∕4. Quite surprising at first sight, the LNA predicts lower
control accuracy when increasing the association rate constant ϵ.
To understand this, we need to consider that the same rate of
product formation ϵhXY i can be achieved by many different com-
binations of X and Y . The consumption is thus close to zero order
because the flux is not changed when X and Y change in opposite
directions, which allows for very large anticorrelated fluctuations
(1, 9). If the flux is unchanged and ϵ is increased, hXY i decreases
to the point where one of X and Y is very close to zero and the
other one abundant. The control accuracy is thus very low with
the result that hXi þ hY i is much higher than with balanced pools
resulting in a disproportionally high loss through the decay path-
way. The direct benefits of a high association rate is thus over-
shadowed by the imbalanced stochastic fluctuations it renders.

From our stochastic simulations of the FCD motif in Fig. 5,
we show the throughput (Fig. 5 A–D) and control accuracy
(Fig. 5 E–H) as functions of KR and ϵ for two different volumes
of the systems; Ω ¼ 10 in the left column and Ω ¼ 104 in the right

column. For both control accuracy and throughput, the first row is
without delay and the second row with a delay τ ¼ 2.

Without delay (Fig. 5 A and B), we see that the throughput is
increased if we increase the association rate ϵ, because X and Y
pools shrink and feedback does not limit the throughput. Further-
more the control accuracy (Fig. 5 E and F) is limited by fluctua-
tions according to Eq. 12. Consequently, the control parameters
should be in the region ϵKR < 4Ω. This region is more extended
in large systems with high Ω. The dotted line shows where the
control accuracy is calculated to be 0.5 using time-delayed
LNA. Increasing the feedback by reducing KR will improve con-
trol accuracy (and reduce throughput), just as predicted by
the LNA.

Now if we also consider systems with delays, we can see that the
control accuracy (Fig. 5 G and H) is reduced in the region
where we predict oscillations. The dashed line shows the Hopf
bifurcation from the mean-field analysis, i.e., where sustained
oscillations appear for large Ω. In contrast to when we have no
delay, increasing the feedback, by decreasing KR, will no longer
increase the control accuracy because it will make the system
move into an oscillatory state as the regulatory precision is lost
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Fig. 5. Throughput (A–D) and control accuracy (E–H) for the FCD motif.
(Left) We have Ω ¼ 10 and (Right) Ω ¼ 104. For both throughput and control
accuracy, the upper row is without delay and the lower row is with a delay
τ ¼ 2. The dashed line shows the bifurcation separating sustained oscillations
from nonoscillatory solutions in the mean-field approximation and the punc-
tuated line shows where the LNA estimates the control accuracy to be 1∕2. In
all panels, n ¼ 2, α ¼ 1, and β ¼ 1.
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altogether. The oscillations will also decrease the throughput
(Fig. 5 C and D) of the system because the synthesis systems
are inhibited a significant fraction of the time.

Discussion
Because of the stochastic nature of chemical reactions, cells have
to use regulatory systems to maintain homeostasis also in a con-
stant environment. This is particularly true for processes that
should operate close to a critical point, such as the point of
saturation of an enzyme or the balance point of two fluxes. Here,
lack of regulation leads to suboptimal or deleterious effects due
to high sensitivity accompanied by large fluctuations. We have
analyzed how these systems should be optimally feedback regu-
lated when we consider that the regulatory system responds to
time-delayed signals, for instance due to the time it takes to
express proteins. We find that the optimal control systems oper-
ate very differently when the time delays are considered. In par-
ticular, the optimal parameter region is much smaller for time-
delayed control systems. For instance, in the choice between tran-
scriptional regulation and direct product inhibition in the enzyme
system, the nondelayed system can in many situations be accu-
rately operated with only transcriptional regulation, whereas
the time-delayed system benefits greatly from having a direct pro-
duct inhibition, although this comes at the cost of maintaining a
pool of inhibited enzymes. A similar tradeoff is found in the flux-

coupled system, where strong nondelayed feedback can be used
to balance the fluxes at a relatively low cost. Whereas, in the time-
delayed system, strong feedback is not an option because it leads
to oscillations. Instead the system is restricted to a small optimal
region with moderate feedback and larger enzyme pools.

The analysis of these time-delayed stochastic control systems
was made possible by our extension of the Linear Noise Expan-
sion. Using this mathematical tool we can derive approximate
analytical expressions for the variance and covariances of the
fluctuations around stationary points in the time-delayed system
that would appear identical in conventional deterministic treat-
ment. The analytical approximations clarify the behaviors of the
system over a much larger parameter space than what can be ana-
lyzed or visualized using stochastic simulations.

Based on the results for two simple regulatory motifs, we con-
clude that a careful examination of how time-delayed regulation
and stochastic kinetics operate together will be necessary to un-
derstand the constraints for the evolution of complex intracellular
control systems.
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