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Direct negative feedback decreases fluctuations and is a ubiquitous mechanism for homoeostatic 
control. However, intracellular regulation frequently operates indirectly, resulting in delayed 
responses. Here we derive an analytical expression that quantifies the consequences from 
delayed negative feedback resulting from typical multistep synthesis pathways, for example, 
transcription or translation. We find that indirect feedback leads to more fluctuations than 
without feedback for intermediate delays, but surprisingly not for long delays. The anomalous 
fluctuations at intermediate delays emerge from positive correlations between the delayed 
regulatory events, and are shown to be equivalent to an increased stoichiometry in the 
synthesis of new molecules. The results primarily give us insight about the design principles 
of delayed stochastic control systems and why a fixed feedback delay gives more fluctuations 
than a broadly distributed feedback delay. It is also shown that the feedback delay of auto-
repressed regulators can result in more sensitive regulation of downstream processes through 
stochastic focusing. 
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All macro molecules and most metabolites in the cell are syn-
thesized through a series of intermediate biochemical steps. 
Their production is commonly feedback regulated to sustain 

homoeostasis and to suppress the always present intrinsic fluctua-
tions resulting from the birth and death of individual molecules. 
The biochemical feedback mechanisms do, however, also obey 
the probabilistic laws of biochemistry as they are realized through 
chemical reactions between noisy components, which may hamper 
the fidelity of the feedback response1.

In addition, the feedback regulation is usually indirect, acting 
early in the process leading to the final product, which is desirable 
as formation of intermediate products are avoided when being in 
excess. The downside is that such indirect feedback will result in a 
delayed response equivalent to the time needed to synthesize the 
intermediate molecules. As the chemical steps are stochastic, the 
synthesis time will be different for each molecule even under sta-
tionary conditions, whereas the distribution of the feedback delay 
time will be well defined. However, the delay distribution can be 
different for different growth conditions, as the rates of intermedi-
ary events will depend on, for example, the availability of nutrients 
and enzymes. A well-known example is that amino-acid starvation 
alters the synthesis rates of proteins2–4. Naturally occurring regula-
tory networks have evolved to deal with regulatory delays, as well 
as changes in the distributions of delay times, and to understand 
the rationale in their operation. Quantitative modelling and analysis 
have to take the same considerations.

On the modelling side, there are different approaches to inves-
tigate indirect feedback regulation. It is desirable to reduce the 
dimensionality of the problem, keeping it tractable without losing 
important dynamical properties. Therefore, unless only a very few 
synthesis steps are modelled, the steps are frequently collapsed and 
replaced by an explicit—fixed—delay in the feedback, which is for-
mally correct in the limit of many steps5,6. In addition, it is often 
attractive to reduce the dimensionality by formulating the models 
in the limit of many molecules, in which the average concentration 
of molecules can be modelled with differential equations7. In these 
limits, it is well known that the delayed feedback may result in large 
amplitude oscillations8,9, where the feedback system is out of phase 
with species it is trying to regulate. Such delay-induced oscillations 
are, for example, believed to drive specific molecular clocks10,11. For 
feedback regulation in systems with a limited number of molecules, 
the intrinsic noise in the chemical reactions has to be analysed in 
combination with the delayed feedback. In these cases, stochastic 
kinetics with delayed reactions can be straightforwardly simu-
lated12,13 with small modifications of the stochastic simulation algo-
rithm14. Such Monte Carlo approaches can be used to investigate 
dynamic properties for specific models and parameters, but give 
limited insights into the general principles for how stochastic kinet-
ics of homoeostatic control or other biochemical feedback networks 
are influenced by delays.

In this paper, we quantify the noise properties of general delayed 
feedback by starting from the individual reactions leading to the 
delayed response. As will be shown, the delayed feedback will not 
only result in decreased relaxation rates but also in a positively 
correlated synthesis activity. Fluctuations arising from correlated 
synthesis events will have a maximum for feedback delays longer 
than the lifetime of the regulated quantity and result in a noise level 
higher than unregulated synthesis. In addition, we will show that 
this phenomenon is not correctly retained in a model where a fixed 
feedback delay is replacing the indirect regulation of the multistep 
synthesis.

Results
Multistep and delay dynamics. We can picture a general multistep 
synthesis chain similar to the illustration in Figure 1. Each step i 
corresponds to one chemical state or molecular species, which is 

transferred chemically or physically to the next state in the chain 
with the rate ki. The n steps could, for instance, be the individual 
transcription events in polymerizing a regulatory RNA molecule. 
The number of molecules in the final state Xr—the ‘r-molecule’—is 
the quantity that is monitored and regulated through a feedback 
mechanism controlling the influx of molecules into the first state 
X1. The r-molecule is finally degraded with the rate b. The feedback 
Φ = Φ[xr] is an arbitrary function of the concentration of the 
regulated molecule xr and captures the processing of the regulatory 
control. It can take any shape, with the only restriction being 
0 ≤ Φ ≤ 1—maximal influx a whenever Φ = 1 and no influx when 
Φ = 0. For an autorepressor, Φ could be the Hill function, describing 
that the fraction of time regulatory sites are bound by Xr, but can be 
more intricate depending on the complexity of the feedback control. 
The model contains n + 1 variables, and we use the shorthand 
notation, step feedback model, ‘SFM’, when referring to this model. 
Frequently, the individual steps are replaced with a finite delay td in 
the feedback response, equivalent to the mean synthesis time. Then, 
the model only contains one variable, the number of r-molecules. 
The argument of the feedback function is in this setting translated 
to the concentration of the r-molecule at time t − td. We abbreviate 
this model as the delay feedback model, ‘DFM’.

Let us first express the equations describing the SFM and DFM 
in the limit of a large number of well-stirred molecules. For prac-
tical reasons, we rescale time with the lifetime of the r-molecule, 
1/b, which gives us time τ = bt, maximal influx α = a/b and step rate 
κi = ki/b. The (dimensionless) equations then read 

  x x x x x x x x xi i i i i n n1 1 1 1 1= − = − = −− −aF k k k k[ ] , ,r r r

with   x x x x x x x x xi i i i i n n1 1 1 1 1= − = − = −− −aF k k k k[ ] , ,r r r = d/dτ. The solution xr satisfying the delay differential equa-
tion, describing the dynamics of the DFM 
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is a good approximation of xr in (1), when the number of steps n is  
large (Supplementary Note 1). Both (1) and (2) have the same  
stationary solution xr,s given by αΦ[xr,s] = xr,s, which is stable to per-
turbations for certain combinations of feedback delays and (loga-
rithmic) feedback gains f = − ′ = − ′aF aF aF[ ] /( [ ]) [ ],, , , ,x x x xr s r s r s r s   
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Figure 1 | Illustration of a multistep synthesis with indirect feedback 
regulation. Xi is the number of molecules of state i and ki the transition rate 
from state i to i + 1. Φ is the feedback, which controls the flow of molecules 
into the first state. Xr is the number of final molecules regulated by the 
indirect feedback. The average time for making the n steps is td.
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which is a measure of the relative change in synthesis rate per rela-
tive change in Xr at the steady state xr,s. The system becomes oscilla-
tory when the feedback gain is too strong in relation to the feedback 
delay, that is, if the regulation responds too strongly based on old 
information, it is easy to overshoot to goal (ref. 15 and Supplemen-
tary Note 1).

Molecular fluctuations. The fluctuations originating in the bio-
chemical reactions can be analysed by the chemical master equa-
tion16, describing the changes in probability for occupying each 
chemical state. Unfortunately, we can only calculate the noise prop-
erties exactly from the chemical master equation in very simple 
cases17,18, and usually we have to rely on approximation methods. 
An often used route is the linear noise approximation (LNA)16 that 
can be used to estimate mean values and the covariances of copy 
number fluctuations.

The covariance Cij between two species i and j in the LNA satisfies  
Lyapunov’s matrix equation at the stable stationary solution xs 

AC CA V+ +T = 0,

where A is the Jacobian matrix describing the linearized dynamics  
around steady state and V the diffusion matrix. Both A and V are 
specified in the Methods section. We are interested in the vari-
ance of the Xr-molecule, Cr r. For a constant κi = κ, i = 1,…, n, we 
have τd = n/κ and Crr can be calculated by a recursive relation of the  
elements in (3) (Supplementary Note 2): 
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is non-negative and defined as the stoichiometric delay coefficient 
for reasons that will be explained in the next section. As the feed-
back gain φ appears both in the numerator and the denominator 
of Crr, it may potentially increase or decrease the variance, depend-
ing on the feedback delay τd = td/b. γ is a variable with a maximal 
magnitude of the order of unity that can be determined in various 
limits. Production of (single) molecules without feedback gives a 
variance that follows the mean, corresponding to a Poisson process. 
Any other value of the variance is an effect of the feedback gain and 
the feedback delay.

The stoichiometric delay coefficient. We will now explain the ori-
gin of the stoichiometric delay coefficient by starting with a simple 
example. Suppose that we have two reactions where molecules are 
created and annihilated and the average in- and out-flux of mol-
ecules are constant, but that we have some freedom in designing 
the stoichiometry. A simple example would be to have a reaction 
where one molecule is created, on average, every second, with the 
alternative to create two molecules every other second. The two 
alternatives are equal in the macroscopic description, but differ if 
molecular fluctuations are considered16.

Formally, suppose that each birth step generates p molecules 
and that molecules decay individually. The rates of production and 
decay are given by f[x] and g[x], respectively, 
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In the LNA (3), the variance of X is given by the rate of reaction 
events multiplied by their stoichiometries squared divided by the 
rate of relaxation to steady state, that is, 
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where fs = f[xs] and gs = g[xs] at the steady state xs, and we in the 
last row assume constant production and spontaneous decay. The 
average number of molecules 〈X〉 = xs. Molecular fluctuations thus 
increase linearly with the stoichiometry p. If each reaction creates 
one molecule, p = 1, we obtain Poissonian statistics.

Let us now apply the same ideas to the creation and annihilation 
of r-molecules in the SFM and the DFM. Assume for a moment that 
the feedback delay occasionally leads to synthesis of several new 
molecules during a short interval, because multiple delayed synthe-
sis events are initiated before the number of molecules changes and 
synthesis is downregulated. The impact of creating two molecules 
in two successive events, much closer in time than the average time 
between synthesis events, is equivalent to one reaction where two 
molecules are created. Such close synthesis events can therefore 
be interpreted as an average increase in stoichiometry, p = 1 + sd. 
The coefficient sd = sd[τd] is a—yet to be determined—function 
of the feedback delay that we call the stoichiometric delay coef-
ficient. Assuming that the effects of the delayed feedback can be 
described by a change in the stoichiometry and relaxation rate for 
a one species system, Xr, we end up with the following birth and  
death scheme: 

q q
F
→ + →

′a x
d

b
s X X
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with ′ = +a a s/( )1 d , as equally many molecules are, on average, cre-
ated regardless of the change in the stoichiometry—at equilibrium 
we have the in- and out-flux ′ +a x s a x bxF F[ ](1 ) = [ ] =, , ,r s d r s r s .  
Repeating the calculations from the p-stoichiometry example  
earlier (7), with the relaxation (the denominator) given by the 
eigenvalues of the Jacobian of the SFM and the DFM (calculated in 
Supplementary Note 1), yields the expressions we obtained in (4a) 
and (4b), respectively. We thus conclude that the term sd is a result of 
a delay altered stoichiometry, hence the name stoichiometric delay 
coefficient.

The stoichiometric delay coefficient can be estimated for differ-
ent feedback gains and feedback delays from equation (5). When 
the feedback delay is small, defined by t fdmin{ , }1 1− , the stoi-
chiometric delay coefficient scales linearly with the feedback delay  
(Supplementary Note 2) 
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Note also that the increase is independent of the number of bio-
chemical steps n. The linear increase in this regime is because of 
an increased accumulation of positively correlated synthesis events. 
For large feedback delays, td n (implying a finite n) and small 
feedback gains, f1, the stoichiometric delay coefficient can be 
approximated as (Supplementary Note 2)

(6)(6)

(7)(7)

(8)(8)

(9)(9)
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In this limit, the coefficient is decreasing with the feedback delay and 
now depends on the number of biochemical steps n. The decrease 
with increasing t nd/  is in this case because of the broadening of 
the distribution of the feedback delay, which will be clarified shortly. 
Combining equation (9) and equation (10), we conclude that for 
feedback gains that cannot induce oscillations the stochiometric 
delay coefficient attains its maximum for finite feedback delays.

Figure 2a displays numerical calculations of the stoichiometric 
delay coefficient from Lyapunov’s matrix equation, equation (3), 
for a process including 100 synthesis steps. The first observation is 
that for most feedback gains and feedback delays the coefficient sd is 
much smaller than unity. Second, the figure confirms the behaviour 
anticipated from equation (9) in the lower part of the figure and 
from equation (10) in the upper left corner.

We exploit the Fano factor F = Crr/〈Xr〉 to quantify the intrinsic 
noise. For the SFM, the Fano factor is numerically computed using 
equation (3). In addition, we measure the Fano factor from sto-
chastic simulations of the SFM and the DFM, using a version of the 
stochastic simulation algorithm 14 for delayed reactions12,13. For the 
DFM simulations, the finite number of steps must be translated to 
an appropriate feedback delay, as the time τi to take one step forward 
in the SFM is exponentially distributed and the expected time for 
a molecule to propagate from step 1 to step n is not exactly τd, but 
rather follows a distribution with the mean 
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If the step rate is constant, κI = κ, then it follows from (11) and (12) 
that the feedback delay is gamma distributed with mean τd = n/κ 
and variance s k tt

2 2 2= / = /n nd
19. By the central limit theorem, the 

distribution of the total delay time is well approximated by the nor-
mal distribution N ( , / )t td nd

2  when n grows. In the (artificial) limit 
n→ with a finite feedback delay, we obtain the delta distribution  

(10)(10)

(11)(11)

(12)(12)

δ(τ − τd)—equivalent to an explicit-fixed feedback delay. When 
n = 1, the delay is exponentially distributed. The distribution for 
the delayed events resulting from the SFM model can therefore be 
broad or very narrow depending on which n is used.

The Fano factor computed from the LNA and the simulations are 
plotted in Figure 2b. First of all, it is clear that the feedback delay τd 
must be smaller than unity for the feedback to suppress molecu-
lar fluctuations. In the original variables, this translates to feedback 
delays smaller than the average lifetime of the r-molecule td < 1/b. A 
Fano factor greater than unity is a direct consequence of the stoi-
chiometric delay coefficient, and the maximum is reached for feed-
back delays larger than the lifetime of the r-molecule. The decay for 
longer feedback delays can be explained by the increased width of 
the distribution of the feedback delay, which scales as td/ n. The 
positively correlated synthesis events generated by the feedback in 
the first biochemical step are smeared during the n steps and are 
therefore not apparent in the final stage of making the molecule.

In the limit n→ and a fixed τd > 1, there is no increased width 
of the distribution of feedback delays, and therefore no decay in the 
stoichiometric delay coefficient. Therefore, the black circles from the 
DFM simulations in Figure 2b show a plateau rather than a peak. 
In this limit, the covariance or Fano factor can be calculated from 
the solution of an integral equation. The value at the plateau can be 
determined explicitly (Supplementary Note 2). 
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which implies that the stoichiometric delay coefficient in this limit 
is approximately sd≈φ2. In Figure 2c, we display the Fano factor from 
stochastic simulations of a fixed delayed feedback. The approxima-
tion in equation (13) is less accurate for larger feedback gains, but as 
we can see it holds well up to φ = 0.6.

The relation (13) can be understood intuitively by considering two 
independent, identically distributed, stochastic variables X and Y. 
For longer delays, the feedback control on X is then modelled by the 
(uncorrelated) influence of Y. It follows from ref. 20 that the relation  
between the Fano factors is (Supplementary Note 2) 

F FX Y= +1 1
2

2f ,

As FX = FY, we have that FX = 1/(1 − φ2/2) and (13) follows.
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Figure 2 | Feedback-regulated molecular fluctuations. (a) The size of the stoichiometric delay coefficient sd for different feedback gains and feedback 
delays in the SFM with n = 100. Macroscopic oscillations of the concentration appear with parameters in the white area. (b,c) Intrinsic noise measured 
by the Fano factor of the SFM and the DFM. In (b), the solid line is the LNA, the plus signs stochastic simulations of the SFM and the circles stochastic 
simulations with delays for the DFM, with feedback delays sampled from N ( , / )t td d

2 n . The orange symbols are the results for n = 10, the brown symbols 
for n = 100 and the red symbols for n = 1,000. The black circles are simulations for the DFM with a fixed feedback delay, equivalent to the ‘n = ’ limit. In (c),  
simulations of the DFM with fixed delay, corresponding to n = . Orange circles are simulations of the DFM with a feedback gain φ = 0.2, brown circles 
φ = 0.4 and red circles φ = 0.6. The dashed lines are approximations of the value of the Fano factor at the plateau calculated from equation (14). In both (b) 
and (c), the errors are smaller than the symbols.
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Propagation of delay-induced fluctuations. The consequences of 
delay-dependent intrinsic noise will of course depend on the bio-
logical context of the regulatory molecule. The systems responding 
to the fluctuating species will, however, in many cases have evolved 
to respond to the whole distribution of the fluctuating input and not 
just its average value. For this reason, the overall system dynam-
ics will in some cases only seem rational when the fluctuations are 
considered in the analysis. To illustrate this point, we extend the 
autorepressor system to regulate the synthesis of another molecule, 
depicted in Figure 3a. The feedback regulation of the molecule X 
is the same as the one given in Figure 2b, with the same feedback 
gain. The regulation of the second molecule, Y, is repressive and 
modelled by F(X) = k/(1 + (X/K)2), where it is assumed that the X 
molecule equilibrates at its state of repression on a much faster 
timescale than the relaxation time of the distribution of X mole-
cules, P(X). Under these conditions, the average synthesis rate of 
Y is 〈 〉F X F X P XX( ) = ( ) ( )Σ , which implies that the concentration 
of Y will depend on the fluctuations in X, as F(X) is a non-linear 
function and therefore 〈F(X)〉 ≠ F(〈X〉). To illustrate this point, we 
perform stochastic simulations of the biochemical reactions and the 
results are displayed in Figure 3b. The orange line is the mean level 
of X molecules, which does not depend on the feedback delay in 
the synthesis of X molecules, whereas the deviation from the mean 
value does, as is illustrated by the shaded area. The red circles are 
the mean number of Y molecules. The Y synthesis responds to the 
broadening of the X distribution, and the average number of Y 
therefore responds to the delay in X regulation, although the aver-
age number of X molecules does not. This effect can be tuned to 
any desired value by tuning the parameters. More interestingly, the 
sensitivity amplification for the regulation of Y by X, (∆Y/Y)/(∆X/X) 
will increase for certain time delays as can be seen in Figure 3c. The 

sensitivity amplification is increased when a change of the average 
concentration generates a disproportionate response because of the 
non-linear response to the perturbed fluctuation profile—a phe-
nomenon known as stochastic focusing21. Here with the result that 
Y is most sensitive to changes in X for time delays corresponding 
to the lifetime of X molecules, where the fluctuations are close to 
independent of the feedback and the noise is Poissonian.

Discussion
Regulation is essential when it is desirable to maintain homoeosta-
sis in a variable environment and because of intrinsic fluctuations 
at the molecular level also in a constant environment. Imprecise 
regulation is costly because it results in a deviation between the pro-
duction and demand of the regulated species. Making too few mol-
ecules will limit downstream pathways or functions and making too 
many may lead to the fact that resources are wasted in maintaining 
too high intracellular pools, or worse, to toxic levels of the molecule. 
The feedback delay of indirect feedback is a result of the many con-
secutive steps when making a protein, mRNA, a metabolic product 
in many enzymatic steps or to process, modify and transport a mac-
romolecule in the cell. As the feedback delay will have a significant 
influence on the dynamic and stochastic properties of the system, it 
has to be included in the design or evolution of the regulator system 
as well as in its analysis. For negative auto-repression to success-
fully repress fluctuations, the feedback delay has to be shorter than 
the timescale of relaxation of the regulated quantity. This may seem 
trivial to achieve for gene expression, as the typical relaxation times-
cale for stable proteins is in the order of the generation time of the 
cell. However, in many cases, the relaxation time of the regulated 
species can be much shorter than the generation time, such as in 
the case of RNA degradation22, metabolite turnover or proteolytic 
degradation of proteins. In these cases, fast feedback is essential or, 
as we just have seen, it may have deleterious effects. In this context, 
it is also important to remember that the feedback delay will change 
with the environmental conditions. For instance, under amino-acid 
starvation, the time required to synthesize a protein may be signifi-
cantly delayed because of ribosomal stalling. A robust feedback sys-
tem must therefore handle variations in the mean feedback delay 
and its distribution. For example, the feedback should not induce 
oscillations when the feedback delays are unusually lengthy, which 
requires a moderate feedback gain. Even if the feedback gain does 
not promote oscillations, anomalously large fluctuations may occur 
for intermediate time delays.

Figure 4 summarizes the feedback response for various feedback 
delays. For short feedback delays, shorter than the lifetime of the 
r-molecule, the feedback will counteract the deviations from the 
steady state and thus reduce fluctuations, as illustrated by (i). This 
noise-reducing effect will be reached independently of the number 
of consecutive synthesis steps. When the feedback delay is longer 
than the lifetime of the regulated species, the delayed response will 
change the state in a random direction as compared with the cur-
rent deviation from the steady state and the noise-reducing effect 
of feedback is lost, (ii) and (iii). Moreover, although the synthesis 
of new molecules is uncorrelated to the current state, the signal to 
the feedback is correlated on the timescale of fluctuations of the  
r-molecule, which for large feedback delays is 1/b—the lifetime 
of the r-molecule. Therefore, the feedback generates periods of 
increased activity, where the synthesis events lie close in time and 
effectively resulting in stoichiometries larger than one. For fixed 
feedback delays, the feedback-regulated synthesis events and their 
associated stoichiometries are transferred in time, unchanged, to 
the synthesis of molecules and thus remains no matter how long the 
feedback delay is. If, on the other hand, the feedback delay is a result 
of a finite number of consecutive synthesis steps, any feedback-gen-
erated correlations on the first synthesis step will be translated to the 
synthesis of r-molecules for intermediate feedback delays (ii) but 
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Figure 3 | Propagation of fluctuations. The panel (a) illustrates the auto-
regulation of X and X’s regulation of Y. The auto-regulation is repressive 
and has the same properties as in Figure 2b, with feedback gain φ = 0.75 
and n = 1,000 synthesis steps. The negative regulation of Y is modelled 
using a Hill function F(X) = k/(1 + (X/K)2). In (b), we plot the mean number 
of X molecules (orange line) and its deviation (shaded area). The red 
circle shows the mean number of Y molecules, which is achieved using 
K = 〈X〉/50, the maximal rate k = α (equal maximum rate of X). The decay 
rate constant of Y is 0.001. (c) Sensitivity amplification (∆Y/Y)/(∆X/X) 
when perturbing the maximal rate of X molecules by 5%. From top to 
bottom, K = 〈X〉/5, 〈X〉/25 and 〈X〉/50, with all other parameters as  
in (b). The dashed line is the large-molecule limit amplification, where 
〈F(X)〉 = F(〈X〉), calculated for a 5% perturbation, which is approaching  − 2 
(the Hill coefficient) when the perturbation becomes infinitesimally small.
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vanish for longer synthesis times (iii). The reason is the deviation in 
the synthesis time, which scales as t nd/ . For long feedback delays, 
t n bd/ > 1/ , new molecules will, as a result of the increased devia-
tion in the synthesis time, be created independently—equivalent to 
production without feedback, thus displaying Poissonian statistics. 
We conclude that distributed feedback delays that arise from a lim-
ited number of consecutive enzymatic steps in general result in a 
more robust feedback regulation than a sharp fixed feedback delay, 
as the distributed delay makes the system forget obsolete regulatory 
actions. We note that the reason many feedback processes occasion-
ally will run into long feedback delays is the limitation of one of 
several key metabolites, such as 1 amino acid out of 20, a coenzyme 
in anabolic reactions. In these cases, the distribution of the feedback 
delay will be broad, because it is only one or a few steps in the delay 
processes that are extended, and the negative effects of delayed feed-
back regulation will be mild. We also note that there are processes 
that will accentuate the positive correlation between delayed events, 

such as queuing of stalled RNA polymerase and ribosomes. Such 
effects will result in even larger effective stoichiometries and more 
fluctuations. An accurate description of the dynamic distribution 
of delayed events in these cases will require numerical simulations 
that go beyond the analytical results presented in this study. Finally, 
although the anomalously large fluctuations observed at interme-
diate time delays by definition are counterproductive in terms of 
maintaining homoeostasis, the fluctuation may still have positive 
contributions when seen in a broader perspective. For example, we 
have shown that the auto-repressed species may be a more potent 
regulator of a downstream process when the delay-induced fluctua-
tions are taken into account. In closing, both distributions of fluctu-
ations and time delays are evolved together with all other properties 
of the systems. It is therefore expected that several aspects of intrac-
ellular regulation only make sense when time delays and stochastic 
processes are included in the analysis.

Methods
Calculating the covariance matrix. Given a Jacobian matrix A and a diffusion 
matrix V, the steady-state covariance matrix C is in the LNA of a biochemical  
reaction network at a fixed point (without feedback delay) obtained from  
Lyapunov’s matrix equation (3).

The LNA describes the covariance exactly if the feedback Φ is linear in xr. 
Otherwise, it is an approximation. The Jacobian matrix is calculated from the 
differential equation (1) describing the rate of change of the mean values of the 
different species in the multistep synthesis and is evaluated at the stationary point 
xs (Supplementary Note 1). 
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For simplicity, we have assumed equal step rates κi = κ. The diffusion matrix is 
given by the frequency of reactions and their corresponding stoichiometries at the 
stationary point xs, V = + x ,ij

n
r,sΣl l li lj ir jra=1 n n d d  where al is the rate of reaction l, 

vli the stoichiometric coefficient for element i in reaction l and δij is the Kronecker 
delta23. The mean number of r-molecules is 〈Xr〉 = xr,s. We obtain, using that 
αΦ[xr,s] = xr,s at the stationary solution when i = j = 1, 
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Now, assume that equation (3) has a solution of the form 
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The variable γ  is yet to be determined. Inserting the above ansatz into equation (3)  
will verify the consistency of the ansatz and that all elements satisfy | g ij m|< ,  
where m is a constant, independent of κ and φ, with a magnitude of the order of 
unity. The advantage of rewriting C in terms of γ as described above is that the 
ansatz captures the major influence of φ and κ on the solution, and will therefore 
render expressions that nicely display the effects of different feedback gains and 
feedback delays. For more details, see Supplementary Note 2. 
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