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Supplementary Figure 1: Influence of defocus on maximum likelihood (MLE) fits. To illustrate the role of defocus,
we subdivide the MLE fits according to their average absolute defocus |z |, where z is the z-coordinate averaged over
the exposure time (extracted from the simulations). Because the spot width depends on z, the overall errors increases
with increasing defocus. More interestingly, the difference between the three estimators also vary strongly with
defocus, and all estimators perform quite well for the most well-focused spots. However, the conditional precision
estimates still show significant bias at small precisions, since we did not filter on spot width in these graphs (as
explored in Supplementary Note 1). Analysis and visualization mimic those in Fig. 2a,b. (a-d): true and estimated
root-mean-square error (RMSE). (e-h): Normalized conditional RMSE. In both cases, spots are sorted according to
their average z-position (averaged over the exposure time). Exposure times 1 ms,3 ms, and 6 ms.

Supplementary Figure 2: Mean value and 1% quantiles of estimated diffusion constants using the covariance-based
diffusion constant estimator (CVE) of Ref. [1] and Supplementary Note 9, and the maximum likelihood diffusion
constant estimator (MLE) of Supplementary Note 10. The data is the same as in Fig. 5, and the true diffusion
constant (still) 1 µm2 s−1. Both the estimators use position and precision data, but the MLE explicitly uses the
estimated uncertainty of individual positions, while the CVE only uses averages, but the results are almost
indistinguishable. However, the fact that the MLE estimator is limited to return positive estimated diffusion
constants and handles missing data points (by assigning them infinite or very large variances) may be useful in
practice. On the other hand, the CVE is both simpler to implement and significantly faster.
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Supplementary Figure 3: MLE fit parameter distributions (empirical probability density functions, pdf) from
symmetric and asymmetric fits. a) Normalized background, b) normalized spot amplitude, c) spot width, with the
theoretical minimum width σ0 =

0.21λ
NA marked by a vertical dashed line. For the asymmetric fits, the distribution of

largest and smallest width are shown. Exposure times 1 ms,3 ms, and 6 ms.

Supplementary Figure 4: Spot width thresholds on maximum likelihood (MLE) fits. (a-c): Normalized conditional
root-mean-square errors (RMSE) for various thresholds on the relative spot width, σ/σ0, where σ = 0.21λ/NA is
the minimum spot width. Laplace estimates are shown using both a symmetric and asymmetric Gaussian spot
model, while the Cramér-Rao lower bound (CRLB) estimates use the symmetric fit. For the asymmetric fits, the
threshold is applied to the smaller width parameter. (d-f): Fraction of spots passing the threshold. Data comes from
simulated exposure times of 1 ms,3 ms, and 6 ms.

Supplementary Note 1 Sub-populations in MLE fits

Here, we look at some subpopulations of MLE localized spots, with the aim to get further insight into what goes
wrong in the MLE precision estimates, and to look at the effect of various selection thresholds (or aposteriori filters).
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Supplementary Figure 5: Spot amplitude thresholds and maximum likelihood (MLE) fits. (a-d): Normalized
conditional RMSE for various thresholds on the relative spot amplitude N/Ntrue. (e-h): Fraction of spots passing the
thresholds. Data comes from MLE fits, exposure times 1 ms,3 ms, and 6 ms, and is plotted as in Supplementary
Figure 4.

Parameter distributions

The full fit parameter distributions are shown in Supplementary Figure 3. Overall, the distributions are quite broad,
and in the case of background and spot amplitude, not centered on the true (simulated) value. As we will see below
(and was noted also in Ref. [2]), this bias is intrinsic to the Gaussian spot model. We also note a subpopulation
of fits with almost zero background both for the symmetric and asymmetric spot models. For the spot width, a
significant portion of the fits end up below the theoretical minimum width σ0 =

0.21λ
NA , and this portion is larger for

the asymmetric spot model.
It is natural to think that the fits that deviate most from the true values might be worse in some sense, perhaps

associated with bad precision estimates. This could be translated to a simple parameter filter, where spots with
“extreme” fit parameters are discarded. To test this, we apply parameter thresholds on the background, spot amplitude,
and spot width, and see how this affects the conditional RMSE estimates and on the fraction of spots that are kept.

For the spot width, we use a lower threshold only, which we set to some (varying) fraction of the minimum width
σ0. As shown in Supplementary Figure 4, this does improve the consistency of the conditional RMSE, and also
weakens the tendency to underestimate the precision at low errors. However, this comes at the price of discarding a
quite large fraction of the spots, especially when the average RMSE is high.

For the spot amplitude, we use both a low and high threshold, but keep the lower threshold below half of the true
value to account for the fact that the amplitude estimator is biased (see Supplementary Figure 8 below). The result,
shown in Supplementary Figure 5, resembles that of the spot width: the consistency of the precision estimates is
improved, but at the cost of discarding a significant fraction of the spots. Also, the effect on the bias at low errors is
weaker than for the spot width threshold.

For the background, we also use both a lower and upper threshold. As shown in Supplementary Figure 6, this
works less well. The consistency of the precision estimate does not improve as much as for the width and amplitude
thresholds, although the fraction of discarded spots are at least as high. This might be partly because the precision
is less sensitive to the background (at least at the background levels we use here), but also because the bias of the
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Supplementary Figure 6: Background thresholds and maximum likelihood (MLE) fits. (a-d): Normalized
conditional RMSE for various thresholds on the relative background intensity b/btrue. (e-h): Fraction of spots
passing the threshold. Data comes from MLE fits, exposure times 1 ms,3 ms, and 6 ms, and is plotted as in
Supplementary Figure 4.

background estimator depends on the relation between background and spot amplitude (see Supplementary Figure 7
below), which makes it more difficult to define a good general threshold.

Implications
Summing up, the main reason for the bad performance of the CRLB on our test data is that it is less robust towards
defocused spots than the Laplace approximation. Second, we see indications that the inconsistency of the conditional
RMSE estimates at small errors is mainly due to a sizable subpopulation of spots where the MLE fits converge to a
model with unphysically low spot width. Attempts to improve precision estimates by thresholding on fitted spot width
and spot amplitude seems to work, but in a large range of conditions, the number of discarded spots is too large to
make it an attractive method in practice.

Single particle tracking is especially sensitive to discarded fits, since this breaks up trajectories into shorter pieces
and limits the range of dynamics that can be observed. In addition, it can introduce bias in the downstream analysis,
since spot quality often correlates with biologically interesting properties such as the diffusion constant.

Part of the problem with parameter thresholds is that in low light conditions, the statistical fluctuations of the fit
parameters are larger than the systematic effects, which makes thresholds unnecessarily wasteful. Another difficulty
is that the Gaussian spot models are not unbiased estimators of background and spot amplitude (see Supplementary
Note 2), so even if those are known exactly (as is the case here, but not in real applications), good thresholds may
not be so easy to define.

Supplementary Note 2 High-intensity spot simulations
The distributions of fit parameters from the localizations have two different sources: sampling fluctuations and
intrinsic image fluctuations. Sampling fluctuations are random effects of the fact that we are fitting a model to an
image with a fairly low number of randomly emitted photons and in the presence of electronic camera noise, and are
expected to decrease with increasing number of photons in each image. Intrinsic image fluctuations refer to the fact
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that the fluorophore moves randomly during exposure, and hence images of different spots still look different even if
we had an infinite number of photons. In live cells, other sources of sample heterogeneity also contribute to intrinsic
fluctuations.

The intrinsic fluctuations can be thought of as a concrete realization of a prior distribution (a simple and instructive
example is described in Ref. [3]), and empirical Bayes approaches that learn prior parameters from the data along
with individual fit parameters have been developed for some single molecule techniques [4, 5].

Here, start instead with an exploratory approach, and analyze simulated data where the statistical fluctuations
have been suppressed by increasing the overall intensity of the images. Concretely, we run diffusion simulations
with N = 12 000 photons per spot, background intensities ranging from 20-320 photons per pixel, readout noise
0.1, and EM gain 10 (to avoid numerical overflow in the simulated images). To relate this to experimentally relevant
parameters, it is useful to compare the relative spot and background intensities. We therefore define the amplitude-
background ratio (ABR) as the average photon density inside one standard deviation of a diffraction limited spot
compared to the average background intensity,

ABR =
0.3935N/(πσ2

0)

b/a2 , (1)

where a = 80 nm is the pixel size, b is the background (photons per pixel), σ0 ≈ 0.21λ/NA is the std. of a diffraction
limited spot, and

P
(|x| < 1|x ∼ N (0, 1)

)
=

∫ 1

0
re−r

2/2dr ≈ 0.3935 (2)

is the probability mass inside 1 standard deviation in a 2D Gaussian distribution. Our experimentally relevant
numbers, N = 100 − 600 photons and b = 1, 3 photons per pixel, thus have ABR = 3 − 50, which is also the range
we use for our high-intensity simulations.

Results with symmetric Gaussian spot model
Supplementary Figure 7 and Supplementary Figure 8 show distributions of background and spot amplitude from
high-intensity simulations at various exposure times. We see large bias in both parameters, downwards and mainly
ABR-independent for the spot amplitude, and increasingly upwards with increasing ABR values for the background
intensity. This behavior can be largely understood in terms of two effects. First, our simulations contain a mixture of
spots in and out of focus. Defocused spots increasingly spread photons outside the 9-by-9 region of interest we use
for fitting, leading to some downward bias in spot amplitude. More importantly, real PSFs have “shoulders” which
are not well described by Gaussians spot models [2]. As a consequence, our localization procedure misinterprets
some of the spot intensity as increased background. This contributes to a downward bias in spot amplitude, and also
explains why the relative background bias is largest when for high relative spot intensity. An amplitude-background
scatter plot (Supplementary Figure 9) also reveals ABR-dependent correlations between amplitude and background,
as well as a small population of spots with essentially zero background.

Supplementary Figure 10 show spot amplitudes, normalized by the std. σ0 (see Eq. 1) of a diffraction limited
Gaussian spot. The spot widths scatter in a limited interval above σ0, showing that the fits below this limit in the low-
light simulations (Fig. 2d) are indeed fit errors. The shape of the distributions show no strong dependence on ABR,
but instead group depending exposure time tE. This is a motion blur effect, which is more appropriately understood
in terms of the diffusion length during exposure, which scales as

√
2DtE. Thus, data with multiple diffusive states,

which is a biologically relevant case for single particle tracking experiments [6], will contain a mixture of spot width
distributions. Moreover, the widening of the spot images is both due to in-plane motion and the z-dependence of
the PSF. The compound net effect therefore also depends on the imaging wavelength and the sample geometry, as
illustrated from the quite different spot width distribution when the wavelength is decreased from 369 nm to 514 nm.
For example, tE = 22 ms at 639 nm is quite similar to tE = 10 ms at 514 nm.

Results with asymmetric Gaussian spot model
We also analyzed the high intensity 639 nm simulations with an asymmetric Gaussian spot model, Eq. (10). The
background and spot amplitude distributions are essentially identical to those from the symmetric model, but each fit
generates two spot widths, whose distributions are showed in Supplementary Figure 11.
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Supplementary Figure 7: Probability density function (pdf) of rescaled background intensity b/btrue for various
exposure times and amplitude/background ratios, at λ = 639 nm.

Supplementary Figure 8: Probability density function (pdf) of rescaled spot amplitude N/Ntrue for various
exposure times and amplitude/background ratios, at λ = 639 nm.

Supplementary Figure 9: Scatter plots of rescaled spot amplitude and background, sorted on amplitude/background
ratio. Both panels show the same data in different scales.
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Supplementary Figure 10: Probability density function (pdf) of rescaled spot width σ/σ0, for various exposure
times tE and amplitude/background ratios (ABR), with wavelength (a) λ = 639 nm and (b) λ = 514 nm. Fit
parameter refers to a symmetric Gaussian spot model. Also shown is the exponential prior on the excess spot width
σ/σ0 − 1.

Supplementary Figure 11: Probability density function (pdf) of rescaled spot widths σ · · ·/σ0 from an asymmetric
Gaussian spot model, for various exposure times and amplitude/background ratios. a) Distribution of smallest width
parameter σmin in each fit. b) Aggregated distribution of both width parameters from each fit. c) Distribution of
largest width parameter σmax in each fit. Also shown is the exponential prior on the excess spot widths σ1,2/σ0 − 1.

Supplementary Note 3 Localization priors

From the high intensity simulations above, it is clear that the quantitative relation between fit parameters and true
parameters depends in a complex way on a range of experimental parameters, not all of which are easy to measure of
control accurately in real experiments. We therefore do not attempt to construct a quantitative models for the intrinsic
image fluctuations, but instead try a “weakly informative” approach, where we aim merely to exclude unreasonable
parameter values (such as σ < σ0) without exerting strong influence in regions with reasonable values, and also to
regularize the numerical problem.
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Supplementary Figure 12: Normalized (true / estimate) root-mean-square error (RMSE) for maximum aposteriori
estimates (MAP) for spots with 270 photons, 3 ms exposure time, and background 1 photon per pixel, analyzed with
different mean value parameter b0 for the background prior. Results for both symmetric and asymmetric spot models
are shown, each run with our standard choice of spot width prior.

Weak regularization of background intensity

For regularization, we notice that the background intensity in some cases gets very low, b on the order of e−10

or lower, that partial derivatives of the likelihood w.r.t. ln b are (near) zero. This can make the Laplace precision
estimator numerically unstable, since it depends on inverting the Hessian matrix of partial second derivatives. Such
situations can be regularized using a weak prior.

We choose a normal prior distribution of ln b (log-normal on b), with a wide standard deviation parameter of
ln 30. The prior mean value parameter needs to be estimated from data, but for such a weak prior, an order-of-
magnitude estimate is enough, and we should also not have to worry about systematic bias in the background fit
parameter (Supplementary Figure 7), or about moderate background variations between different samples or over
time for example due to bleaching. Supplementary Figure 12 shows the normalized RMSE for a single imaging
condition, analyzed with the background prior mean value parameter differing a factor 3 up and down compared to
the true background, demonstrating the insensitivity.

Prior on spot width, symmetric spot model

For the spot prior, we enforce σ ≥ σ0. We would also like to include some upper limit for the spot width, since the
high intensity spot width distributions are clearly bounded, and since very wide spots are difficult to distinguish from
only background on a finite region of interest.

To enforce a lower bound σ ≥ σ0 for localizations, we re-parameterize the spot model, and write

σ = σ0(1 + ∆σ) = σ0(1 + eψ). (3)

According to the transformation rules for probability distributions, a prior distribution p∆ on ∆σ translates to a prior

pψ (ψ) = p∆(eψ)��� d∆σ
dψ

��� = p∆(eψ)eψ (4)

on ψ. If p∆ is finite as ∆σ → 0 (or at least diverges slower than linearly in ∆σ), it will thus stop ψ from taking
arbitrarily large negative values, which is good numerically. Similarly, we see that the factor eψ can encourage a large
parameter value grow without bound, which might cause problems for low-light spots or false positives, where the
data might not enforce an upper bound. It therefore makes numerical sense to make the prior counteract this as well.

We find reasonable performance by choosing an exponential prior on ∆σ, which means

psym(ψ) =
1
d0

exp
(
ψ − eψ

d0

)
, (5)

where d0 should be of order unity, so that the prior is close to flat in the most occupied parameter region in
Supplementary Figure 10. Trying a few different d0 values (Supplementary Figure 13) we see some dependence on
d0, and choose to continue with d0 = 1.
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Supplementary Figure 13: Different exponential priors on ∆σ, with 639 nm wavelength, and 1 ms, 3ms, and 6 ms
exposure time. All data is for Laplace precision estimate using symmetric a spot model and a weak log-normal
background intensity prior centered on the true background. (a-d) Estimated root-mean-square error (RMSE),
normalized by the true RMSE to make the differences more visible. (e-h) Conditional RMSE normalized by
estimated RMSE. Dashed and dotted lines show 0,±10% bias, respectively.

Supplementary Figure 14: Different exponential priors on ∆σi ∼ exp(s0) for the asymmetric spot model, with 639
nm wavelength, and 1-22 ms exposure time. All data is for Laplace precision estimate and a weak log-normal
background intensity prior centered on the true background, with the results for the symmetric spot model with the
standard ∆σ ∼ exp(1) prior (and weak log-normal background) shown for comparison. Dashed and dotted lines
show 0,±10% bias, respectively.



10

Prior on spot width, asymmetric spot model
To generalize the above results to an asymmetric spot model we make the corresponding reparameterization

σ1,2 = σ0(1 + ∆σ1,2) = σ0(1 + eψ1,2 ), (6)

and use independent exponential priors on ∆σ1,2,

pasym(ψ1, ψ2) =
1
d2

0
exp
(
ψ1 + ψ2 −

eψ1 + eψ2

d0

)
. (7)

Again trying a few different d0 values on a wider range of exposure times (Supplementary Figure 14), we see a
stronger dependence on d0 than for the symmetric spot model. The best performance, better than for the symmetric
MAP fit, clearly is the choice d0 = 1/2 in this case. However, even though the performance is improved, the conditions
with significant blur and high spot intensity give quite large relative errors, perhaps because these conditions produce
most spots with clearly non-Gaussian intensity profiles.

Curiously, d0 = 1/2 is also when the prior for the symmetric special case ψ1 = ψ2 agrees best with that of the
symmetric prior. Another possible explanation is that as seen in Supplementary Figure 11, the exp(0.5) distribution
describes the tail of the larger spot width parameter quite well. Since large values of the largest spot width are
likely not well constrained by the data, it makes sense that the performance of the model is best when this part
is well described by the prior. If this is the case, the asymmetric spot model with this prior may work less well
in conditions where the spot width tails behave differently. Lesser robustness of the asymmetric prior can also be
seen by comparing the d0-dependence of the symmetric and asymmetric models, and note that a factor 2 difference
around the optimal value makes a larger impact in the asymmetric (Supplementary Figure 14) than the symmetric
(Supplementary Figure 13) case.

EM gain calibration
The likelihood function we use for localization depends on the camera noise parameters, and miscalibration of those
parameters may influence the result. In particular, one suspects that the EM gain parameter is important, since it is
the average conversion factor between image intensity and number of photons, and estimation errors depend strongly
on the number of photons. Supplementary Figure 15 shows the effect of gain calibration errors. The true RMSE
appears insensitive, but the estimated precision does depend on the gain used in the localization.

To understand this dependence, we note that the estimated errors scales with the number of photons as RMSE ∝
1/
√

Nphotons, and that the apparent number of photons is inversely proportional to the gain, Nphotons ∝ 1/g.
Combining the two, we conclude that the estimate RMSE should scale as

√
g/g0, where g0 is the true gain, and g

is the gain used for localization. As seen in Supplementary Figure 15a, this relation seems to describe the estimated
RMSE pretty well.

Supplementary Figure 15: Effect of EM gain calibration error. a) Estimated root-mean-square error (RMSE).
Dashed lines illustrate the scaling proportional to

√
gain. b) true RMSE. Precision was estimated using the

symmetric MAP Laplace estimator. All spots were simulated with EM gain 50, but analyzed with 0,±5% calibration
error in the EM gain. Misc. spot parameters: 125 or 600 photons per spot, background 1 photon per pixel, 3 ms
exposure.
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Supplementary Note 4 Influence of priors on localization errors and spot convergence
Aside from influencing the precision estimates, the priors may also influence the actual localization errors. Such
a comparison is shown in Supplementary Figure 16, for both MLE and MAP localization, using both symmetric
and asymmetric Gaussian spot models, with symmetric MLE localization used as the reference case on the x axis.
The localization errors of the different methods seems to order as asymmetric MLE (worst) > symmetric MLE >
symmetric MAP > asymmetric MAP. However, the differences are no larger than 10%, and all methods seem to
perform equally well for the brightest spots (smallest errors).

Supplementary Figure 16: Comparing localization errors of the different methods. Root-mean-square error
(RMSE) for symmetric vs. asymmetric Gaussian spot models and maximum likelihood (MLE) vs. maximum
aposteriori (MAP) estimates, with symmetric MLE localizations as reference on the x axis. Simulated images are
639 nm wavelength, exposure times 1-22 ms. Dashed and dotted lines show y = x, and ±10% change, respectively.

Similarly, the priors affect the numerics of the localization problem and overall convergence rates. As seen in
Supplementary Figure 17, the MAP localization leads to an increased fraction of kept spots. This is an expected
effect of trying to repress fits that lead to badly conditioned Hessian matrices.

However, the performance difference on real data might be different, since the spots included in our localization
tests are selected based on known true positions. Thus, the complications of spot detection, which would most likely
lead to a quite different population of candidate spots for localization, are not accounted for here (however, see
Supplementary Note 6).

Supplementary Note 5 PSF model mismatch
It is tempting to speculate that some of the difficulties with the MLE estimates is because the Gaussian spot model
used for localization is not an accurate enough description of the real PSFs. Could one do better by adopting more
realistic spot models, perhaps directly parameterized from experimental PSFs [7]?

To test this, we modified our simulations to use a Gaussian PSF instead, thus achieving perfect agreement between
fit model and the generative PSF, and tested our precision estimators on this data. To retain some defocus effects, we
adopted the model of Deschout et al [8], in which the standard deviation of the Gaussian PSF varies with the distance
z from the focal plane as

σ(z) = σ0

√
1 +

z2

z2
0
, z0 =

4πn
λ
σ2

0, (8)

where σ0 is the spot width at the focal plane and n is the refraction index. We used λ = 639 nm and NA = 1.4, and
n = 1.33, and Eq. (1) to compute σ0, which gave σ0 ≈ 96 nm and z0 = 489 nm. For the simulations, we used the
same backgrounds, spot amplitudes, and exposure times as with the more realistic PSFs used for Figs. 2 and 3, and
also used the same analysis procedures.
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Supplementary Figure 17: Comparing the fraction of discarded spots as a function true root-mean-square error
(RMSE) symmetric vs. asymmetric Gaussian spot models and maximum likelihood (MLE) vs. maximum
aposteriori (MAP) estimates. Simulated images are 639 nm wavelength, exposure times 1-22 ms.

The results are shown in Supplementary Figure 18. Qualitatively, there is a striking similarity to the results using
the more realistic PSFs (Figs. 2 and 3), and we recognize all major bias trends described in the main text. In more
detail, the Gaussian PSF simulations yield some quantitative improvements: the largest errors are somewhat smaller,
as is the the median bias of the conditional RMSEs, and the interval lengths in the conditional RMSE box plots are
also somewhat more narrow. These improvements are quite modest however. They are also a little uncertain: Since
the overall errors are also smaller for Gaussian PSF data, the comparison might not be completely fair.

Theoretically, it is perhaps not so surprising that localizing with a spot model that perfectly matches the PSF
gives no dramatic improvement. Even for our fairly short exposure times, the fluorophores do move during exposure,
and thus the actual spot profiles are not perfect Gaussians even if the PSF is.

Supplementary Note 6 Consequences of spot detection
So far, we selected ROIs based on the known true positions of the spots, extracted from the simulations. This is not
possible for real data, and one might ask if the performance we see is representative of real applications. Two effects
are of particular concern. First, using the true positions to select ROIs and initial guess for the localizations might
make the optimization problem artificially well-behaved by reducing the risk of getting stuck in local minima, and
thereby lead to overly optimistic results. On the other hand, the pool of candidate spots resulting from using the true
positions may include spots that would not be detected by a spot detection algorithm, for example because they are
far out of focus. Since hard-to-detect spots are likely to be difficult to localize as well, this would tend to make the
simulated data artificially ill-behaved.

To estimate how these effects may play out in real data, we ran numerical experiments using a spot detection
algorithm to pre-filter out hard-to-detect spots. Specifically, we use a feature detection transform that targets local
radial symmetry [9], and also provides spot locations that we use as initial conditions for the localizations. We did
not optimize the transform parameters for every imaging condition, but use conservative settings that seem to work
well for the middle of our spot intensity range. As a result, 25-50% of the most low intensity spots was not detected,
and false positive rate was generally low (multiple spots detected in 0-2% of the images). For simplicity, we also
discarded spot detections more than 3 pixels away from the true positions as false positives. The remaining spot
detections where used as initial conditions for the MLE and MAP localization procedures described above.

Supplementary Figure 19 compares estimated and true RMSE as in the main text, for low blur conditions
(exposure time up to 6 ms), with and without the spot detection pre-filter. Several differences stand out. Because of
the pre-filter’s tendency to discard ill-behaved spots, the overall errors are lower after pre-filtering. The asymmetric
MLE fits also perform better on the remaining spots with high localization error, as does the MAP CRLB estimator.
However, the bias in precision at low estimated precision remains in the MLE fits, and thus the improved performance
of our MAP estimators is clear also in the more well-behaved pre-filtered data set. It also appears that the initial
positions provided by the radial symmetry transform work well enough for the optimization, so that the results using
true positions for initializations are not over-optimistic in this respect.
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Supplementary Figure 18: True and estimated precision (root-mean-square error, RMSE, and conditional RMSE,
cRMSE) using symmetric/asymmetric spot models (asym.), maximum likelihood (MLE)/maximum aposteriori
(MAP) localization, and Cramér-Rao lower bound (CRLB)/Laplace (Lapl., L.) precision estimates, on simulated
data with a z-dependent Gaussian point-spread function. Dashed and dotted lines show 0,±10% bias, respectively.

Supplementary Note 7 Spot models for localization
We use two common spot models for localization, based on a constant background intensity plus a Gaussian intensity
profile for the spot. We parameterize the symmetric spot in the usual manner,

E(x, y) =
b
a2 +

N
2πσ2 exp

(
−

(x − µx )2 + (y − µy)2

2σ2

)
, (9)

with pixel size a (known), background b (expected number of photons per pixel), spot width σ, amplitude N (expected
number of photons per spot), and spot position (µx, µy). For the asymmetric spot model, we use a representation in
terms of two principal widths and a rotation angle,

E(x, y) =
b
a2 +

N
2πσ1σ2

exp
(
− 1

2
(x − µ)†R†(ν)

[ σ1 0
0 σ2

]
R(ν)(x − µ)†

)
, (10)

where
R(ν) =

[
cos ν sin ν
− sin ν cos ν

]
(11)

is a rotation matrix. For maximum-likelihood localization (MLE), we use the log of the parameters b, σ, σ1,2 as fit
parameters, both as a convenient way to ensure that they stay positive, and because we suspect that their logarithms
have more Gaussian-like likelihoods, which would improve the quality of the Laplace approximation [10].

Supplementary Note 8 Spot selection criteria
The choice of what spots to include and exclude in the analysis can impact the results. We select based on 1) an upper
threshold on estimated precision, 2) an upper threshold on the distance ∆R between localized position and the center
of the ROI, and 3) convergence to parameters where the Laplace precision estimate can be computed, which requires
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Supplementary Figure 19: True and estimated root-mean-square errors (RMSE) and conditional RMSE (cRMSE)
using region of interests and initial spot positions based on true positions (truth) or as detected and localized using
with a fast radial symmetry transform (FRS) for spot detection. The localization and precision estimates combines
symmetric/asymmetric spot models (asym.), maximum likelihood (MLE)/maximum aposteriori (MAP) localization,
and Cramér-Rao lower bound (CRLB)/Laplace (Lapl., L.) precision estimates, using simulated data as described in
the main text, with exposure time up to 6 ms. Dashed and dotted lines show 0,±10% bias, respectively.

Supplementary Figure 20: True and estimated root-mean-square errors (RMSE) for maximum likelihood (MLE)
fits, and various values of the upper threshold on estimated RMSE. The displacement threshold is ∆R ≤ 4 pixels =
320 nm, and exposure times range from 1 ms to 22 ms. Dashed and dotted lines show 0,±10% bias, respectively.

the log likelihood to have an invertible Hessian matrix. (We also have an upper threshold of spot width, which in the
case of asymmetric spots are only applied to the smallest principal width, but this affects only a handful of spots).

Supplementary Figure 20 shows a comparison between the true and estimated RMSE for MLE fits for various
values of the upper threshold on the estimated RMSE. The data is the same data as Fig. 2, but including all exposure
times and both symmetric and asymmetric fits. The Laplace estimators are more sensitive to this threshold than the
CRLB. For practical purposes, the lowest 4 pixel threshold is probably reasonable, but since our purpose here is to
investigate the consistency, we need converged averages and settle for a 16 pixel threshold. The dependence on the
RMSE threshold is much weaker for the MAP fits however, as seen in Supplementary Figure 21.

Next, we consider the effect of the threshold on the displacement ∆R. This cannot be set arbitrarily high, since it
makes no sense to retain localizations outside the ROI. However, the effect can be simulated by a simple numerical
model which utilizes the fact that our ROI are centered on the true positions: For a given precision ε2, we simply
generate Gaussian localization errors ∆µx,y ∼ N (0, ε2), and compute the variance of those points that fall inside the
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Supplementary Figure 21: Same as Supplementary Figure 20, but for maximum aposteriori (MAP) fits instead.

Supplementary Figure 22: Normalized conditional root-mean-square error (cRMSE) for maximum aposteriori
(MAP) localizations, using various thresholds on the displacement ∆R. Exposure times 1ms, 3ms, 6ms. Dashed and
dotted lines show 0,±10% bias, respectively.

threshold ∆R =
√
∆µ2

x + ∆µ
2
y ≤ ∆Rmax. Supplementary Figure 22 compares this model with conditional precision

estimated from MAP estimates for short exposure times. The agreement seems quite good, and we also see that
∆Rmax = 4 pixel is large enough to effectively remove the artifacts from this threshold.

Supplementary Note 9 Step-length covariance relations with time-varying localization errors
Here, we give a detailed derivation of the various estimators and models mentioned in the methods section,

starting from Eq. (8), the assumption that localizing a moving object amounts to detecting the time-averaged position
with some (independent) localization error, which we will assume to be Gaussian. Parts of these derivations have
been given elsewhere [11, 12], but are restated here in a different form that facilitates a generalization to multi-state
models.
Diffusive camera-based tracking with blur and localization errors
To streamline the presentation, we will use units where ∆t = 1, use the subscript t = 0, 1, 2, . . . to denote discrete
time dependence, and use the step length and localization variances, λt = 2Dt∆t and vt = ε

2
t , respectively. We allow

both of them to be time-dependent, but assume them to be statistically independent and restrict the diffusion constant
to be constant throughout each frame. Then, Eq. (8) reads

xt =
∫ 1

0
f (t ′)y(t + t ′)dt ′ +

√
vtξt, (12)

where ξt are independent identically distributed (iid) N(0,1) variables, and y(t) is the true trajectory of the particle
being localized. The shutter distribution f (t) is a probability density on [0, 1], which describes the image acquisition
process (for example f (t) = 1 for continuous acquisition), but neglects stochastic elements such as fluorophore
blinking. It has the distribution function

F (t) =
∫ t

0
f (t ′)dt ′. (13)
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We divide y(t) in two parts, the true positions yt at the beginning of each frame, which evolve according to

yt+1 = yt +
√
λtηt, (14)

where ηt are again iid N(0,1), and a conditional interpolating process between them, described by Brownian bridges
[13]. Thus, for 0 ≤ t ′ ≤ 1, we write

y(t + t ′) = yt + t ′(yt+1 − yt ) +
√
λtBt (t ′), (15)

where Bt are a set of iid standard Brownian bridges. These are Gaussian processes on the interval [0,1], defined by

Bt (0) = Bt (1) = 0,
⟨
Bt (t ′)

⟩
= 0,

⟨
Bt (t ′)Bt (t ′′)

⟩
= t ′(1 − t ′′), for t ′ ≤ t ′′, (16)

and also independent on different intervals, so that
⟨
Bi (t ′)Bj (t ′′)

⟩
= 0 if i , j. Substituting the interpolation formula

Eq. (15) in the localization model Eq. (12), we get

xt = yt (1 − τ) + yt+1τ +
√
vtξt +

√
λt

∫ 1

0
f (t ′)Bt (t ′)dt ′, (17)

where we have introduced the shutter average, given by

τ =

∫ 1

0
t f (t)dt. (18)

Using the properties of Brownian bridges, Eq. (16), one can show that the last integral in Eq. (17) is a Gaussian
random variable with mean zero and variance

β ≡ Var
[∫ 1

0
f (t ′)Bt (t ′)dt ′

]
= τ(1 − τ) − R, (19)

where R is the blur coefficient of Ref. [11], given by

R =
∫ 1

0
F (t)
(
1 − F (t)

)
dt . (20)

By assumption, vt and Bt are statistically independent, and thus one can add up the noise in the measurement model
and arrive at

xt = yt (1 − τ) + yt+1τ +
√
vt + βλt ζt, (21)

where ζt are again iid N(0,1).

Constant exposure

An important class of shutter distribution are those that are constant during some fraction tE of the each frame, and
then zero, that is,

f (t) =
{ 1

tE
, t ≤ tE,

0, t > tE,
(22)

which leads to
τ =

tE

2
, R =

tE

6
, β =

1
4

tE(
4
3
− tE). (23)

We see that R ≤ 1
6 and τ ≤ 1

2 , with maxima at continuous exposure (tE = 1). On the other hand, β has a maximum
of 1

9 at tE =
2
3 , and the value of 1

12 at continuous exposure can only be further lowered when tE < 1
3 . It is unclear if

this is significant, since with non-constant exposure there is some freedom in how the shutter distribution is defined.
In this special case, one can for example always place it symmetrically in the interval and get τ = 0.5 for all exposure
times. We defer further investigations of this issue to future work.
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Covariance relations
The covariance matrix for the steps ∆xt = xt+1 − xt can be found from Eqs. (14,21). With some manipulations, we
get ⟨

∆x2
t

⟩
= (1 − τ)λt + τλt+1 − (λt+1 + λt )R + vt + vt+1, (24)

⟨∆xt∆xt+1⟩ = λt+1R − vt+1, (25)
⟨∆xt∆xt+t′⟩ = 0, if |t ′ | > 1, (26)

where the expectations ⟨·⟩ are understood to be over the noise distributions only. If we further assume simple diffusion,
λt = 2D∆t = const ., and average over time as well, we recover covariance relations of the same form as Eq. (7),⟨

∆x2
t

⟩
= 2D∆t(1 − 2R) + 2 ⟨vt⟩ , ⟨∆xt∆xt±1⟩ = 2D∆tR − ⟨vt⟩ , (27)

where the averages are now over time as well, and ε2 is identified as the time-average ⟨vt⟩. Thus, the covariance-based
estimators of Ref. [1] should apply also to non-constant localization errors, if one uses the same time-averages for vt
and the step length moments.

Supplementary Note 10 Maximum likelihood estimator
For the case of a single trajectory of simple diffusion in one dimension, the likelihood for the diffusion constant
follows from Eqs. 14 and 21,

p(x |λ) =
∫

dyp(x |y, λ)p(y |λ), (28)

p(y |λ) =
T∏
t=1

(
2πλ
)− 1

2 exp
[
− (yt+1 − yt )2

2λ
]
, (29)

p(x |y, λ) =
T∏
t=1

(
2π(vt + βλ)

)− 1
2 exp

[
− 1

2
(vt + βλ)−1 (xt − (1 − τ)yt − τyt+1

)2]
, (30)

where we neglected to supply a starting density for y1, since the problem is translation invariant. The integral over
the hidden path in Eq. (28) is a multivariate Gaussian and can be solved exactly in several ways [12]. Defining

y = [y1, y2, . . . , yT+1]†, x = [x1, x2, . . . , xT ]†, (31)

where † denotes matrix transpose, we get

p(x |λ) =
∫

dy exp
[
− T ln(2π) − T

2
ln(λ) − 1

2

T∑
t=1

ln(vt + βλ) − 1
2
(
y†Λy − 2y†Wx + x†Vx

)]
= exp

[
− T ln(2π) − T

2
ln(λ) − 1

2

T∑
t=1

ln(vt + βλ)
]

×
∫

dy exp
[
− 1

2
(
(y − Λ−1Wx)†Λ(y − Λ−1Wx) + x†(V −W †Λ−1W )x

)]
, (32)

where Λ,W,V are matrices whose elements are found by comparing terms. This is a multivariate Gaussian in y, with
mean value µ = Λ−1Wx and covariance matrix Σ = Λ−1, and the marginalized likelihood is therefore given by

p(x |λ) = exp
[
− T − 1

2
ln(2π) − T

2
ln(λ) − 1

2

T∑
t=1

ln(vt + βλ) − 1
2

x†(V −W†Λ−1W )x − 1
2

ln |Λ|
]
. (33)

By comparing terms, we see that Λ is symmetric tridiagonal and positive definite, V is diagonal, and W has only non-
zero elements on the diagonal and first upper diagonal, and so it is possible to compute the above matrix expression in
linear time. To find the maximum likelihood estimate, we minimize ln p(x |λ) using standard optimization routines in
Matlab. Two- or three-dimensional trajectories can be handled by treating them as independent observations. Missing
points can be handled by setting the corresponding vt-values to infinity.
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Supplementary Note 11 Variational EM algorithm for diffusive HMM
Here, we extend the above diffusion model to include multiple diffusion constants. We start by writing down a
diffusive HMM, which includes both the hidden path of the above diffusion model, but also a set of hidden states
with different diffusion constants, that evolve as a discrete Markov process. Similar models (that however did not
include explicit motion blur effects), have previously been solved by stochastic EM algorithms [14, 15]. Here, we
instead describe a deterministic variational approach.

In the rest of this section, we proceed as follows: We start by specify the diffusive HMM model for a single 1-
dimensional trajectory. We then outline the variational EM approach, derive high level update equations, and describe
the procedure for re-estimating localized positions. However, we do not give a detailed derivation of all steps in the
algorithm, as large parts of it closely resembles previously published derivations of variational algorithms for HMMs
[5, 6].

Model
In addition to the measured (x) and true (y) positions, we include a hidden state trajectory s = [s1, s2, . . . , sT ], such
that st determines the diffusion constant on the interval [t, t + 1]. The hidden states are numbered from 1 to N , and
evolve according to a Markov process with transition matrix A and initial state probability π. The vector of state-
dependent step-length variances is denoted λ = [λ1, λ2, . . . , λN ]. For a single 1-dimensional trajectory, this leads to
a complete data likelihood of the form

p(x, y, s|λ, A,π) = p(x|y, s, λ)p(y|s, λ)p(s|A,π), (34)

with factors

p(s|A,π) =
N∏

m=1
π
δm,s1
m

T∏
t=2

N∏
i, j=1

A
δist δ j st+1
i j , (35)

p(y|s, λ) =
T∏
t=1

N∏
j=1

(2πλ j )−
1
2 δ j st exp

[
−δ jst

(yt+1 − yt )2

2λ j

]
, (36)

p(x|y, s, λ) =
T∏
t=1

N∏
j=1

(
2π(vt + βλ j )

)− 1
2 δ j st exp

[
−δ jst

(xt − (t − τ)yt − τyt+1)2

2(vt + βλ j )

]
. (37)

Variational EM approach
We would like to perform maximum-likelihood inference of the model parameters, which means maximizing the
likelihood with latent variables s, y integrated out,

L(A,π, λ) =
∫

dy
∑

s
p(x|y, s, λ)p(y|s, λ)p(s|A,π). (38)

Since this problem is intractable, we make a variational approximation [16], meaning we approximate ln L with a
lower bound

ln L = ln
∫

dy
∑

s
p(x|y, s, λ)p(y|s, λ)p(s|A,π) ≥

∫
dy
∑

s
q(s)q(y) ln

p(x|y, s, λ)p(y|s, λ)p(s|A,π)
q(s)q(y)

≡ F, (39)

where the inequality follows from Jensen’s inequality. Here, q(s), q(y) are arbitrary variational distributions that
need to be optimized together with the model parameters to achieve the tightest lower bound, and can be used for
approximate inference about the latent variables. In particular, it turns out that the optimal variational distributions
approximate the posterior distribution of y, s in the sense of minimizing a Kullback-Leibler divergence [16]. We use
gradient descent for the optimization, that is, we iteratively optimize each variational distribution and the parameters
with the others fixed, which leads to an EM-type algorithm.

To optimize F w.r.t. the variational distributions, we set the functional derivatives of F to zero and use Lagrange
multipliers to enforce normalization. After some work, one arrives at

ln q(s) = − ln Zs + ⟨ln p(x|y, s, λ)⟩q(y) + ⟨ln p(y|s, λ)⟩q(y) + ln p(s|A,π), (40)
ln q(y) = − ln Zy + ⟨ln p(x|y, s, λ)⟩q(s) + ⟨ln p(y|s, λ)⟩q(s) + ⟨ln p(s|A,π)⟩q(s)︸               ︷︷               ︸

independent of y

, (41)



19

where Zs,y are normalization constants originating from the Lagrange multipliers, and ⟨·⟩ f denotes an expectation
value computed with respect to the distribution f . As it turns out, these equations are individually tractable, and
results in q(y) being a multivariate Gaussian, and q(s) adopting the standard HMM form amenable to efficient
forward-backward iterations. For the initial state and transition probability parameters, the only dependence in F
comes from p(s|A, λ), and leads to the classical Baum-Welch reestimation formulae [17]. However, optimizing F
w.r.t. step length variances does not lead to a tractable update equation, and we are instead forced to optimize the
λ j-dependent parts of F numerically, that is,

λ j = argmaxλ j

[
⟨ln p(x|y, s, λ)⟩q(y)q(s) + ⟨ln p(y|s, λ)⟩q(y)q(s)

]
. (42)

The lower bound
The lower bound can be computed as well, and gets a particularly simple form just after the update of q(s).
Substituting the update equation Eq. (40) into the expression for F, Eq. (39), we get

F =
∫

dy
∑

s
q(s)q(y) ln

[
ln p(x|y, s, λ) + ln p(y|s, λ) + ln p(s, A,π)

+ ln Zs − ⟨ln p(x|y, s, λ) + ln p(y|s, λ) + ln p(s, A,π)⟩q(y) − ln q(y)
]
= ln Zs − ⟨ln q(y)⟩q(y) . (43)

Here, ln Zs is the normalization constant of q(s) that can be computed as part of the forward-backward iteration, and
since (as we noted above) q(y) is a multivariate Gaussian with dimension T + 1, we get

− ⟨ln q(y)⟩q(y) =
d
2

(T + 1)
(
1 + ln(2π)

)
+

1
2

ln |Σ |, (44)

where Σ is the covariance matrix of q(y). The inverse of Σ is analogous to the matrix Λ appearing in the single-state
diffusion estimator, Eqs. (32,33), and in particular Σ−1 is also symmetric, tridiagonal, and positive definite, and thus
the determinant ln |Σ | = − ln |Σ−1 | can be robustly computed in linear time. Since the EM algorithm approximates
the parameter likelihood, the lower bound cannot be used for model selection as in the case of variational maximum
evidence calculations [5, 6, 18]. However, it is still useful for numerical convergence control, and possibly for model
selection together with some complexity penalty such as the Bayesian or Akaike information criterion [19].

Refined positions
An additional use for the HMM analysis is to use it to refine the localizations. Since the HMM pools information
about many spots, it is in principle possible to beat the Cramér-Rao lower bound for single image localizations in
this way. To set up the refinement problem, we refer back to Eq. (17) and the different contributions to the observed
position xt = zt +

√
vtξt , where

zt = yt (1 − τ) + yt+1τ +
√
λst

∫ 1

0
f (t ′)Bt (t ′)dt ′, (45)

is the motion-averaged position that the localization algorithm tries to estimate (according to this model). To refine
the localization, we compute the posterior density of zt , that is, p(zt |x, θ), where we use θ to denote all the model
parameters.

We start by recalling that the Brownian bridge integral in Eq. (45) is Gaussian with mean zero and variance βλst ,
and using the compact notation yt = (1 − τ)yt + τyt+1, we therefore have

p(zt |y, s, θ) = p(zt |yt, st, θ) = N (yt, βλst ), (46)

where N (a, b) denotes a Gaussian density with mean a and variance b. Furthermore, the localization uncertainty is
also assumed Gaussian and independent of the underlying kinetics:

p(xt |z, y, s, θ) = p(xt |zt ) = N (zt, vt ). (47)

Applying Bayes theorem to these relations, we get

p(zt |xt, y, s, θ) =
p(xt |zt )p(zt |y, s, θ)

p(xt |y, s, θ))
=

N (zt, vt )N (yt, βλst )
N (yt, βλst + vt )

= N
( vt yt + βλst xt

vt + βλst
,
βλst vt

vt + βλst

)
. (48)
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The predictive distribution is finally given by marginalizing p(zt |xt, y, s, θ) over the posterior for y, s. Using the
variational distribution, this means

p(zt |x, θ) ≈
⟨

N
( vt yt + βλst xt

vt + βλst
,
βλst vt

vt + βλst

)⟩
q(y)q(s)

. (49)

In particular, the posterior mean of zt is then given by

⟨zt |x, θ⟩ ≈
⟨
vt yt + βλst xt
vt + βλst

⟩
q(y)q(s)

=

⟨ (1 − τ)µt + τµt+1 +
βλst
vt

xt

1 + βλst
vt

⟩
q(s)

, (50)

which we will use as our estimator for refining the localizations. Here, µt = ⟨yt⟩q(y) is the variational mean value.
The variational average over hidden states is done numerically.
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