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tion rates. If, in addition, there are enough 
molecules of all species involved such that 
stochastic copy-number fluctuations play a 
minor role, it is possible to model how the 
average concentrations change in time with-
out considering molecular copy-number 
distributions. The dynamics of the average 
concentrations are expressed in ordinary dif-
ferential equations (ODEs), often referred to 
as reaction rate equations. This level of mod-
eling is a natural reference for more detailed 
models also when the conditions for its 
validity are not strictly met.

Low-copy-number fluctuation models
When the number of molecules of some spe-
cies is low or the relaxation to steady state 
is slow1, the stochastic nature of chemical 
reactions may influence the dynamics of the 
chemical reaction system. Consequently, the 
average number of molecules can no longer 

Consider a situation in which intracellular 
spatial oscillations are observed for a protein 
of interest. Some of the protein’s biochemi-
cal interactions and their parameters have 
been characterized, so it is straightforward 
to draw a cartoon showing how the compo-
nents may interact. However, on the basis of 
the cartoon alone, it is very hard to discern 
whether the components and their interac-
tions are sufficient and necessary to explain 
the observed oscillation phenomenon. The 
reason is that the intracellular reactions are 
nonlinear, noisy, out of equilibrium and 
dependent on local concentrations, which 
can make the outcome of intracellular 
interactions highly nonintuitive. One way 
to resolve this problem is to make a quan-
titative description—that is, a mathematical 
model—of the cartoon. A well-formulated 
model makes it possible to identify whether 
the reactions in the cartoon are sufficient to 
give rise to the observed phenotype and, if 
so, under which conditions. Building such a 
mathematical model is not straightforward, 
however, especially because it is rarely obvi-
ous a priori which level of physical detail is 
required to capture the biochemical behav-
ior of the cellular process. 

At a high level of detail, a framework 
based on molecular dynamics keeps track 
of the positions of atoms in molecules and 
the forces between them. At a lower level of 
detail, particle-based frameworks keep track 
of the positions of individual molecules and 

when they react. Both of these approaches 
in many cases contain more detail than 
is required to understand a particular 
biological process; even more coarse-grained 
frameworks are therefore commonly used. 

Here we describe commonly used physical 
frameworks for modeling biochemical 
systems at different levels of detail (Fig. 1). In 
particular, we focus on the specific situations 
requiring frameworks that consider both the 
positions of individual molecules and the 
stochastic nature of the chemical reactions 
between them.

Well-stirred deterministic models 
If the molecules of interest diffuse quickly 
and, on average, have time to move through 
the cell between reactions, it is safe to assume 
that it is only the total number of molecules 
of each species, and not their subcellular 
location, that determines the overall reac-
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Physical modeling is increasingly important for generating insights into intracellular processes. We 
describe situations in which combined spatial and stochastic aspects of chemical reactions are needed to 
capture the relevant dynamics of biochemical systems. 
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Figure 1 | Different levels of quantitative modeling frameworks for intracellular chemistry. Microscopy 
images and graphics courtesy of M. Elowitz, S. Paddock, S.B. Carroll and I. Barkefors.
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exemplify, with three different situations, 
where a particle-based framework gives 
radically different results compared to that 
of a nonspatial stochastic treatment (that is, 
using CME) or a spatial nonstochastic treat-
ment (using PDE). 

Implementing spatial stochastic models 
can be finicky; there are several useful free 
software tools available for this purpose, 
such as GFRD, MesoRD and Smoldyn7–9.

 
Example 1: nonlinear responses to uneven 
concentrations. Consider a substance S 
synthesized by sparsely distributed enzyme 
molecules, X, that are diffusing slowly  
(Fig. 2a). S is consumed by enzyme  
molecules E via a conventional Michaelis-
Menten reaction scheme. The S molecules 
do not have time to mix in the entire cell 
before consumption; this leads to con-
centration peaks around each synthesis 
enzyme, which randomly changes location 
because of diffusion. As it is possible to 
locally saturate the consumption enzymes, 
E, the overall rate of S degradation is not as 
fast as it would be if S were evenly spread 
in the system. Particle-based models cap-
ture this behavior and show a higher overall 
concentration of S than the nonspatial sto-
chastic description (CME) and the spatial, 

be described by deterministic reaction rate 
equations. This is because the average rate 
of change in species concentration is typi-
cally not equal to the rate of change evalu-
ated for the average concentration: that is, 
for concentration x and reaction rate f(x), 
<f(x)> ≠ f(<x>). The modeling framework 
that accounts for the stochastic aspects of 
chemical reactions, albeit without spatial 
consideration, is the chemical master equa-
tion (CME)2. In contrast to the deterministic 
rate equations used in ODE models, the CME 
describes the probability distribution of mol-
ecule copy numbers and how this distribu-
tion changes over time. The master equation 
can, for example, be used to model stochastic 
gene expression in a single cell. In this case, 
a few genes per cell make mRNA molecules 
that can be translated many times and thus 
give rise to stochastic bursts in the number 
of proteins3. The CME describes how param-
eters such as transcription rates, mRNA life-
times and translation rates contribute to the 
observed cell-to-cell variability in protein 
expression4.

Deterministic spatial models
When the cell is large in relation to the 
average distance that reactants diffuse in 
between reactions, the reaction rates will 

depend on local concentrations. If, at the 
same time, each reactant has a large num-
ber of reaction partners within its diffusion 
range, local concentration averages describe 
the state of the system accurately, and it is 
not necessary to keep track of individual 
molecules. A model that captures this sce-
nario must describe how concentration 
averages vary in different parts of a cell or 
organism and how these local concentration 
averages change over time. These quantita-
tive models are formulated in coupled par-
tial differential equations (PDEs)5, which 
have a rich history in describing biological 
pattern formation6.

Spatial stochastic models 
Although the total number of reactant mol-
ecules in the cell may be sufficiently high to 
motivate an ODE model if the molecules 
were well-stirred, the number of reaction 
partners within diffusion range of a reactant  
can be low and subject to stochastic fluc-
tuations. In such a case, particle-based 
modeling frameworks that consider both 
the spatial and stochastic aspects of chemi-
cal reactions may be important. There are 
no general rules for when this detail of  
modeling is needed to describe the system at 
a desired level of accuracy. We will instead 
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Figure 2 | Examples of combined spatial and stochastic effects in three simple systems. (a) Nonlinear responses to uneven concentrations. Right, illustration 
of locally produced and slowly diffusing molecules (S) that locally saturate the degradation enzymes (E). Left, reaction scheme modeled with the indicated 
frameworks. In the graph, the total S synthesis rate is held constant for varying synthesizing enzyme (X) concentration by a changing substrate synthesis 
rate per enzyme (kin). ka, association; kd, dissociation; and kout, degradation rate constants. (b) Interference at molecular length scales. Right, illustration 
of the difference in available free A and B molecules when binding and release are treated macroscopically versus microscopically. Left, reaction scheme 
modeled with the indicated frameworks. φ, influx rate. (c) Long-range correlations on membranes. Right, illustration of the decrease in search time when the 
enzyme concentration doubles. Left, reaction scheme modeled with the indicated frameworks. The influx rate increases in proportion to the total number of 
degradation enzymes, Etot. See the Supplementary Note for parameters, simulation details and analytical results. 
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on a flat 2D surface (Fig. 2c). Enzyme 
molecules can convert substrate molecules 
into product via a Michaelis-Menten–type 
reaction scheme. New substrate molecules 
are introduced at random positions on 
the surface, and the product is degraded 
such that the substrate flow is kept out of 
equilibrium. We show the effect of absolute 
distances in 2D systems by gradually 
increasing the substrate influx while 
proportionally increasing the number of 
enzyme molecules. In a corresponding 
3D system, the same fractional increase, 
a, of both substrate influx, akin, and 
enzyme concentration, a[E], would give 
an unchanged product flux per enzyme 
kin/[E] = kcat/(1 + KM/[S]), implying that 
the substrate concentration, [S], remains 
constant. However, in this 2D system, the 
substrate molecules are more likely to react 
with the closest enzyme, which means that 
an enzyme density increase leads to shorter 
substrate search times and, therefore, a 
higher enzyme turnover. Thus, in the 2D 
system using a particle-based framework, 
substrate concentration decreases with 
increasing enzyme density.  See the 
Supplementary Note for the analytical 
treatment and solution of this system. The 
situation in one dimension, such as for 
proteins sliding on DNA or filaments, is 
even more constrained because molecules 
cannot bypass each other16.

Why make it so complicated?
Is it necessary to make complicated mod-
els that include both noise and space when 
there are usually insufficient in vivo data 
to fit the parameters even in an ordinary 
reaction-rate ODE model? In some cases, 
it is obvious that spatial stochastic mod-
els are needed: for example, in trying to 
understand why a protein binding pattern 
nucleates at random positions in space11 
or how an embryo minimizes noise in a 
segmentation gradient17. In other cases, 
particle-based models are desired because 
a less detailed modeling framework would 
in fact require a more complex model to 
explain the data. For instance, in our third 
example above, cooperative substrate 
binding would be needed to account for 
the decrease in substrate concentration 
unless the peculiarities of 2D kinetics are 
accounted for. A final reason for using a 
detailed framework is that it makes it pos-
sible to test whether less detailed models 
are still physically valid when geometri-
cal constraints and physical limitation on 

nonstochastic description (PDE). This situ-
ation is exemplified in vivo by local mRNA 
synthesis near a relatively stationary gene 
in a prokaryotic cell. Local peaks in mRNA 
concentration near the transcription sites 
have recently been observed in Escherichia 
coli10, suggesting that the observed mRNAs 
do not diffuse through the cell. These 
mRNA molecules may saturate the local 
ribosomes such that the overall rate of 
translation is slower than it would be if the 
same mRNA molecules were spread evenly 
over the cell.

The situation we describe here (sparsely 
distributed synthesis molecules) is but one 
example of how stochastic variations in the 
spatial distribution of a species S can arise. 
What is more important is how the uneven 
distribution of S molecules influences the 
average rate of their downstream reactions. 
If the S molecules contribute linearly to 
the rate of downstream reactions, the 
uneven distribution will not affect the 
spatially averaged rate. However, if the S 
molecules contribute nonlinearly to the 
rate, as for saturable enzyme reactions, the 
spatially averaged rate may depend on their 
distribution. In the extreme case of reaction 
schemes with sharp activation thresholds, 
such as bistable or excitable systems, 
spatially heterogeneous fluctuations may 
even drive the system into alternative steady 
states because the fluctuations can make the 
system pass the threshold in some part of 
the cell11,12. 

Example 2: interference at molecular 
length scales. An intriguing situation 
arises when reaction rates are close to dif-
fusion limited such that newly dissociated 
reactants have a high probability of reasso-
ciating before diffusing apart. This implies 
that dissociation processes include multiple 
rebinding events before the molecules actu-
ally lose spatial correlation13. In a CME or 
PDE treatment, these multiple rounds of 
reassociations are included in the dissocia-
tion rate constant, which therefore includes 
both the actual dissociation event and the 
diffusive transport to a position where the 
molecules are uncorrelated. This approxi-
mation fails when one of the newly dissoci-
ated molecules can enter or influence other 
processes before the molecules have lost 
spatial correlation. 

Consider S molecules introduced 
at random places in the cell (Fig. 2b), 
after which S can dissociate into A and 
B. Subsequently the A and B molecules 

can either reform S or enter into another 
process, which is here exemplified by a 
degradation process. When degradation is 
rapid, A and B will degrade before they have 
had time to reach uncorrelated positions 
after dissociation. Here a particle-based 
method, which correctly captures that A 
and B molecule are available for degradation 
before they have reached uncorrelated 
positions, displays a lower steady-state 
concentration than do the CME and PDE, 
which assume that the A and B molecules 
are bound to each other until they have 
moved far apart. 

This situation would be uncommon for 
chemical reactions in which the reactants 
are freely diffusing in three dimensions. 
Here reactants lose spatial correlation at a 
length of only a few molecular radii, and few 
competing reactions can occur before the 
molecules reach this distance. However, in 
the case where the same enzyme can modify 
a macromolecule at several positions before 
diffusing away14, the competing reactant is 
the same molecule that was involved in the 
previous step. Similar situations will arise 
in scaffolds for signaling pathways or in 
receptor clusters15.

Example 3: long-range correlations on 
membranes. Reactions between molecules 
on a membrane—that is, in two dimen-
sions—are radically different from those in 
three dimensions. In two dimensions, the 
absolute distances between molecules will 
influence their reaction rates at all length 
scales. For instance: in three dimensions, 
a molecule in a large reaction volume has 
the same probability of first colliding with 
a molecule that is 10 molecule radii away as 
with one that is 100 radii away. On a two-
dimensional (2D) membrane, the molecule 
is three times more likely to first collide 
with the molecule that is ten radii away. As 
a consequence, the reaction-rate constants 
in a 2D system can be strictly defined only 
microscopically, with the distance depen-
dence explicitly accounted for. Modeling 
frameworks based on macroscopic rates 
assume invariance to absolute distances 
and are thus not well-defined in two dimen-
sions. Put differently, in two dimensions, the 
macroscopic reaction rate ‘constants’ are 
dependent on time and/or concentration, 
which may result in inconsistent results 
unless concentration variations are kept 
small.

To illustrate these points, consider a 
system in which all species are diffusing 
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to understand the biological phenomena of 
interest.
Note: Supplementary information is available 
at http://www.nature.com/doifinder/10.1038/
nmeth.2253.
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