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Introduction 

Life 
You and I are outnumbered. The unicellular beings of this earth are its ma-
jority. The familiar world conveyed to us by our senses and the multicellular 
beings we encounter there are a special rather than the general case of life. 
The earth, the oceans and even our own bodies are teeming with uni-
cellulars. Consequently life is measured on their scale, the miniscule scale of 
one micro-meter, at which objects are well beyond our natural perception. 
This microscopic world is a place which macroscopic analogy and intuition 
often fail to describe. The dominant sensory faculties found here are more 
akin to smell and taste than sight and hearing. Locomotion is performed by 
swimming rather than walking. Should a macroscopic swimmer be miniatur-
ized to this scale she would find herself completely immobilized but for a 
very peculiar range of swimming styles [1]. Gravity is all but suspended and 
instead of falling to the earth a small object is continually bombarded by its 
environment, forcing it to perform a random walk, to diffuse, if not attached 
or actively propelling itself [2]. Inertia is negligible, so that movement stops 
immediately when active propulsion is discontinued [2]. Ballistic weaponry 
is exchanged for a chemical arsenal as collisions carry no momentum. Sexu-
al reproduction is rare and caring for progeny is rarer still. The genetic blue-
print of each individual has a propensity to change, to mutate, and unicellu-
lar beings are less restricted in the ways they may mutate as little or no re-
quirement for uniformity or concerted efforts between individuals is present. 
A multicellular being would have difficulty surviving and reproducing if 
each of its cells was a cancer. The evolutionary strategies of uni-cellulars are 
presumably adapted to this and are oriented towards fast reproduction with a 
high rate of mutability to generate a sufficient number of variants which can 
cope and thrive under the conditions they are subjected to. If there is a beat-
ing heart of unicellular life it is the cell cycle, during which an individual 
will duplicate its parts and give rise to a new individual. Each cycle holds the 
possibility for an individual blue-print to establish itself as the norm for fu-
ture generations of its kind. Therefore uni-cellulars appear to have embraced 
the randomness which governs their existence, incorporating it into their life 
cycles. Their ability to regulate these cycles is unquestionable as nearly 1030 
cycles have concluded since you began reading this thesis. However, the 
mechanisms involved are largely unknown and consequently so are their 
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ability to cope with randomness. The precision in controlling the cell cycle 
will set the range of fates which a unicellular individual can expect to befall 
them. In order to understand what unicellular life is like, I ask and attempt to 
answer the following question in this thesis: How precise is cyclic life? 

Outline 
This thesis is written as an account of the work done during my graduate 
studies, of the trials and errors, confusions and insights I and my co-workers 
have had. It largely follows the chronology of those events. Where it does 
not, anachronisms are introduced to illustrate specific points which seemed 
important to me. The narrative therefore does not specifically discuss the 
papers this thesis is based on separately beyond the timing of the details they 
contain. Measurement technology and biology are blended to a degree in the 
narrative. The earlier sections under Present work contain more detail of the 
technologies used, while later sections contain more biological findings. 
Paper I is a review of the field of single molecule fluorescence microscopy 
in live cells. It may serve as a compliment to the introduction. This thesis 
contains a self-contained manuscript, which is included as an appendix. It 
allows an interested reader access to details and results on which discussions 
in the main text are based. 

A bacterial individual 
The central paradigm of molecular biology 
A bacterial individual can be regarded as being composed of a blue-print, an 
envelope and additional requisite parts to live and reproduce (see Figure 1). 
The blue-print contains the necessary information to construct and coordi-
nate all constituents.  This information is encoded in a molecular alphabet 
with four letters, commonly referred to as A, T, C and G. These are the bases 
of the DNA molecule and they will selectively form pairs so that A will pair 
with T and G will pair with C [3]. The bases, which in their free form are 
referred to as nucleotides, can be combined sequentially to form long poly-
mers consisting of two strands which conform in space to a double-helix 
structure [3]. The sequence of each strand is complimentary to the other 
strand according to the aforementioned base pairing principles. The se-
quence carries a syntax which is common to all life, which allows the infor-
mation to be translated through to up to two molecular languages before 
becoming realized as effector molecules. The additional languages are, as in 
the case of DNA, written as the sequential structure of two other polymer 
molecule types, RNA and proteins.  The act of transmitting information from 
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DNA to RNA is called transcription and from RNA to proteins is called 
translation. The central paradigm of molecular biology stipulates that the 
flow of information is directional and traverses from DNA to RNA to pro-
tein [4].  

Gene expression 
The blue-print of a bacterium is often a single circular DNA molecule, which 
is referred to as its chromosome. The chromosome is insulated from the en-
vironment inside the envelope along with most of the molecular effectors it 
encodes. This envelope is closed and therefore referred to as a cell. This 
spatial separation is the distinction of an individuals identity as the character-
istics of each chromosome is represented by the contents of its cell. There-
fore the term cell is commonly used as a synonym of the term individual. 
Transcription and translation are performed by two important molecular 
entities, RNA-polymerases and ribosomes. RNA-polymerases will synthe-
size a messenger RNA, mRNA, in a directed sequential manner using DNA 
as a template. The sequences of DNA which can be transcribed are genes 
and are bounded by sequence motifs which signify their start and end. The 
content of the mRNAs are in turn translated by ribosomes into protein mole-
cules.  This composite process is often referred to as gene expression (see  
Figure 1 upper). 

Regulating gene expression 
Gene expression is often regulated, presumably to match a cell’s current 
requirements. This can be accomplished in several ways, at different stages 
of the expression process. The most common approach is to regulate the 
expression rate by either increasing or decreasing the rate of transcription. 
This is often accomplished by a designated class of proteins, transcription 
factors, TFs, which interact with a region close to the start of a gene, its 
promoter, to either facilitate or obstruct initiation of the transcription pro-
cess.  Accordingly, TFs can be classified by their mode of interaction as 
being either activators or repressors of transcription [5]. Selective targeting 
of a gene requires that the TF can search and recognize its genomic target. 
Therefore the specific target sequence, often referred to as an operator, and 
the gene encoding its designated transcription factor(s) have co-evolved to 
maintain this interaction [6].   

Molecular species and metabolism 
Molecular effectors can be structural parts, enzymes which catalyze molecu-
lar reactions, regulators which modulate reaction rates or any combination of 
these categories. Bio-molecular reactions can to some extent be classified as 
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This is true for the lactose operon, or lacZYA, which is repressed in the 
absence of lactose and expressed in its presence [8]. This is accomplished by 
a conditional interaction between the repressing transcription factor, LacI, 
and the promoter of the gene, plac. LacI has the ability to interact with DNA 
and with a molecule which is an intermediate in lactose catabolism, allolac-
tose. When bound to allolactose, LacI will lose its selective affinity for its 
specific operator sequence leaving the promoter region unoccupied. LacI 
therefore promotes expression of the gene by means of its own absence in 
the presence of allolactose [9]. The native, or wild type, LacI molecule is a 
tetramer, i.e. four monomers of LacI form the molecule [9]. LacI has two 
DNA binding domains and can therefore bind to two operator sites simulta-
neously.  

Three operator sites are found near the promoter, lacO1, lacO2 and lacO3. 
The main operator site, lacO1, is located close to the lactose promoter, the 
auxiliary operators, lacO2 and lacO3 are located in the start of the lacZ gene 
and close to the end of the lacI gene. The region spanning all three operators 
is ~500 bp [9, 10]. The affinity of the interaction between LacI and the oper-
ator sites is determined by the DNA sequences of the operators [10]. When 
LacI is bound to the promoter, it is likely to be bound with one domain to 
lacO1. The interaction with lacO3 will repress expression from the lacI gene 
and therefore this gene is auto-repressed. When bound to two operators sim-
ultaneously, LacI forms a loop which increases repression of the operon [9-
11]. E.coli is reported to carry only a few copies of LacI per cell [12] and 
their search process for the operators combines free or three dimensional 
diffusion in the cytosol and one dimensional diffusion along DNA [13]. 

Several synthetic analogues to allolactose have been isolated. The most 
commonly used is Isopropyl β-D-1-thiogalactopyranoside, IPTG, a mem-
brane permeable compound which induces the expression of the lac operon 
but cannot be metabolized itself [12].  

The gene product of lacZ gene is an enzyme, -galactosidase, which cata-
lyzes the hydrolysis of lactose. A synthetic analog of its substrate has been 
isolated, ortho-Nitrophenyl-β-galactoside, ONPG, which will once hydro-
lyzed absorb light at a specific wavelength. Therefore the activity of the 
enzyme in a sample can be measured. The activity of the enzyme under re-
pressed and active conditions, i.e. at low and high concentrations of IPTG 
respectively can be measured. The repression fold is the ratio of these values 
and for the native lacZ gene it has been established to be ~1000, i.e. the re-
pressed cellular concentration of -galactosidase is 1/1000 of the maximum 
activity [8]. In order to perform the assay, cells in the sample are lyzed to 
release the -galactosidase molecules.  

The equilibrium occupancy model for gene regulation suggests that the 
average level of expression from a repressed gene is determined by the aver-
age fraction of the time that the promoter is unoccupied. One of its underly-
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volume and the growth rate, µ, is the time derivative of the fractional vol-
ume expansion. 

 

 
The average growth rate of a population of E. coli cells is dependent on the 
living conditions. Factors which have proven to influence growth rate in-
clude the availability and quality of nutrients, the temperature and the ab-
sence of antibiotics. The cell cycle is bounded by two division events and its 
duration is referred to as the cycle time, τC. The average of the cycle time is 
referred to as the generation time, τg.  

The E. coli chromosome and DNA replication  
In order to reproduce a bacterium has to copy its chromosome, which is ac-
complished by the process of DNA replication. The E. coli chromosome is 
circular and consists of 4.6·106 bp [16].  With respect to replication the 
chromosome has an initiation and a termination site, which are referred to as 
the origin, oriC, and terminus, ter, of replication respectively.  These are 
situated at opposite locations on the chromosome. The two distances be-
tween the origin and the terminus are therefore equal and are referred to as 
the arms or replichores of the chromosome [17].  During replication the 
strands of the DNA molecule are separated locally and each strand serves as 
a template for synthesizing a new complimentary strand (see Figure 3). This 
is achieved by integrating bases into the nascent strand successively after 
determining their complimentarity to the corresponding template base. Each 
strand of the DNA molecule has a polarity, i.e. a given direction according to 
which replication will proceed. These are anti-oriented for two complimen-
tary strands (see Figure 3). By opening or unwinding the strands of the 
chromosome locally at the origin, replication can proceed bi-directionally 
and continuously on the strands which polarity matches the direction of the 
corresponding replication process (see Figure 3). There is one such strand 
per chromosome arm, referred to as the leading strand. The remaining strand 
is referred to as the lagging strand.  

The process of unwinding DNA is coupled to replication so that template 
material is made available as replication proceeds. Replication of the lagging 
strand is performed simultaneously as the leading strand, however here rep-
lication is discontinuous and piece-wise, resulting in a fragmented new 
strand. As sufficient stretches of the lagging strand are unwound, replication 
can proceed to the start of the last established fragment. These fragments, 
referred to as Okazaki fragments, are then joined to form a continuously 
connected strand [18].  At each site of replication two replicated DNA mole-
cules will coalesce into one un-replicated molecule. This structure is often 
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Ensemble measurements  
Insights to the inner workings of bacteria have often been derived in accord-
ance to measurements which are averages of large ensembles of cells. A 
population of cells is often asynchronous, i.e. cells are in different phases of 
the cell cycle. Averaging over an ensemble of asynchronous cells may mask 
cell cycle dependent behavior. A common approach to measuring cell cycle 
dependent events is therefore to synchronize cells, usually according to the 
time after division. This can be achieved in several ways. Using the baby 
machine approach, cells are immobilized in a porous membrane by filtering 
a sample of cell culture [27]. By reversing the filter, then slowly passing 
medium through it in the reverse direction, newly divided cells can be eluted 
and collected. Using a similar approach, the baby column technique, immo-
bilization is achieved by using cells which are genetically modified to condi-
tionally express a factor which will allow them to attach to the matrix of a 
column [28]. The expression is induced during the early stages of the exper-
iment until a sufficient amount of cells are immobilized. By passing medium 
through the column, cells which have divided will be released from the col-
umn. In both these approaches, fractions containing synchronized cells can 
be collected.  

The range of ensemble measurement techniques which can afford insights 
on the expression of genes, synthesis of DNA and cell growth have devel-
oped dramatically over the last 50 years.  Further, increased proficiency in 
sequencing and modifying genomes has expanded the range of possible bac-
terial variants to apply these on. However, each ensemble can contain sub-
populations. If these are very different, the average may not represent any of 
the subpopulations accurately. Techniques which could allow researchers to 
study bacterial individuals separately could also potentially allow them to 
identify and characterize subpopulations. 

Fluorescence microscopy in molecular biology 
Fluorescence 
Fluorescent molecules can absorb light at one wavelength and once in this 
excited state, emit light at another wavelength.  The emission wavelength of 
a molecule is longer than that of the excitation light and is described by a 
probability density function referred to as an emission spectrum. By intro-
ducing a filter which selectively only allows light of the emitted wavelength 
to pass, the location of and the quantity of fluorescing molecules can be rec-
orded as a response to directing excitation light to a sample. To further in-
crease the sensitivity, the excitation light can be filtered to only contain 
wavelengths which maximize the probability of exciting the material. This 
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probability is described by the excitation spectrum. The excitation and emis-
sion spectra are characteristic for each species of fluorescent molecule and 
by utilizing their characteristics; several fluorescent compounds can be com-
bined to allow selective detection of each from a mixed sample. 
 

Fluorophores 
A wide range of fluorescent compounds have been isolated or synthesized 
and applied as reporters in various detection schemes. The quality of a fluo-
rescent reporter molecule, or fluorophore, is described by several aspects of 
its performance. The brightness describes the number of photons emitted per 
unit time and is related to the strength of the signal which a reporter can 
generate. The Stokes shift is a measure of the separation between the excita-
tion and emission spectra and is related to the feasibility of separating emit-
ted light from interfering excitation light. Fluorophores bleach as they are 
exposed to excitation light and the relative ability to withstand exposure to 
light is referred to as their photo-stability. The true quality of a fluorescent 
reporter is however dependent on its application.  
 

Fluorescence in biology 
The use of fluorescence in biology predates science and mankind as a wide 
variety of fluorescent organisms has been found in nature. The development 
of high-performance fluorophores has yielded increasingly better reporters. 
However, many of these are difficult to employ in the study of living cells. 
For this application, harnessing naturally occurring fluorophores has proven 
more successful. The green fluorescent protein, GFP, was isolated in the 
1960s from the jelly fish Aequorea victoria [29]. With the development of 
protocols for genetic modification, the genes coding for fluorescent proteins 
could be identified and transferred to other organisms, evolved for better 
performance and alternative color and combined with native genes to pro-
duce fluorescent fusion proteins [30]. This allowed researchers to study the 
expression of genes in living organisms [31].  

Localization and the diffraction limit 
A light microscope can be used to detect and localize fluorescent proteins 
within living cells. Due to the physical properties of light however, there is a 
limit to the spatial resolution which can be achieved. This limit is known as 
the diffraction limit and is the minimum distance at which two points in a 
micrograph image can be distinguished. The diffraction limit is roughly 250 
nm [32] which constitutes 25% of the typical size scale of bacteria. Several 
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strategies have been reported for increasing the resolution beyond this limit, 
these are referred to as super-resolution techniques [33-35]. The most com-
monly used approach utilizes that light emitted from a stable point source 
will spread according to a point spread function, PSF. The PFS closely re-
sembles a symmetric Gaussian function (see paper I, figure 1 d), the width of 
which corresponds to the diffraction limit. By comparing a diffraction-
limited spot to this model, the accuracy in determining the center position 
converges as inverse of the square root of the number of recorded photons 
[36].  In the case of a few hundreds of emitted photons by an individual mol-
ecule, its position can be determined with an accuracy of 20-50 nm.  

However, this can only be achieved if the target molecules are sparsely 
distributed within the cell [37]. One strategy for achieving this even for rela-
tively abundant or high-copy number species is to genetically fuse these to a 
class of photo-activatable or photo-convertible FPs, which may alter their 
fluorescence properties in response to a pulse of light [38]. In this way a 
minute subpopulation of FPs can be activated, detected, localized and al-
lowed to bleach before repeating the cycle. This technique has many names, 
two of the more commonly used are Photo-Activatable Localization Micros-
copy, PALM, and Stochastic Optical Reconstruction Microscopy, STORM 
[34, 35].  

Studying molecular interactions in living cells  
Detection and localization of fluorescent particles is dependent on acquiring 
images on a time-scale during which the particle will appear to be immobi-
lized. For example TFs bound to their genomic operators are immobilized 
for durations of more than 1 s [39], while freely diffusing [40] or non-
specifically interacting TFs [39] are more mobile and may traverse the entire 
cell during the same time. Therefore, by acquiring images of fluorescently 
labeled TFs for long durations, the resulting fluorescence from the specifi-
cally bound fluorescent TFs are registered as localized spots. The fluores-
cence resulting from non-specifically bound or freely diffusing fluorescent 
TFs is distributed over all the locations at which these molecules resided 
during the acquisition [39]. In this way it is possible to selectively study 
molecular interactions rather than the total number of fluorescent fusion 
proteins. The mobility of molecular complexes or binding states varies from 
case to case. However, it is now possible to study freely diffusing individual 
FPs in live cells and consequently researchers are not limited by technology 
with respect to time resolution [40].  

The time-scales of the binding states do however have to be sufficiently 
separated so that the resulting signal is generated by the molecules of the 
targeted state. Also as previously concluded, the interaction foci have to be 
sparsely distributed in the cell. Therefore the limits to which interactions can 
be studied in this way are set by biology itself. This is also true concerning 
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the most important aspect of this approach, namely that the modification of 
fusing a biomolecule to an FP a must not alter the native properties of that 
biomolecule. However, fluorescent molecular constructs can be engineered 
to meet these requirements. For example Yu et al. studied the expression 
from the lacZ gene of the lactose operon over the cell cycle by modifying the 
gene to encode for a fluorescent construct consisting of a fast maturing yel-
low fluorescent protein variant, Venus, fused to a membrane associating tag, 
Tsr. Tsr-Venus molecules were detected as diffraction limited dots as they 
were immobilized on the membrane for 100 ms [41].  

Cell imaging 
Individual bacteria can be imaged using light microscopy. The light passing 
the sample is collected by the objective and the resulting image recorded by 
a camera. Bacterial cells are naturally transparent and in order to detect their 
outlines in micrograph data several contrast methods have been developed. 
The phase contrast method utilizes the shift in phase of light passing through 
a sample to create contrast, making structural information more accessible to 
the human eye. Using this method, bacterial cells can be detected as dark 
bodies on a lighter background. 

In order to image live cells these have to be immobilized and kept under 
conditions which allow them to grow. Meeting the former condition entails 
the reduction or elimination of the inherent Brownian motion colloidal-
particles such as bacteria are subject to. Further, cells have developed modes 
of active propulsion. Several techniques have been developed to immobilize 
cells in the focal plane. Tissue and cells can be fixed, i.e. chemically cross-
linked for example using formaldehyde, allowing the organization of the cell 
to be maintained in stasis until the time of observation. Cells can also be 
chemically attached to a glass surface by coating it with poly-(L)-lysine, 
PLL.  

Both these techniques fail to meet the criteria of maintaining cells in a 
state of growth.  PLL is toxic to bacteria  [42] and the attachment is tempera-
ture dependent and becomes unstable for temperatures above ~30 °C.  A 
common strategy to maintain cells is to sandwich them between a glass sur-
face and a pad consisting of growth medium mixed with a gelatinous matrix, 
agarose. In this way cells are immobilized and have nutrients available for 
growth [43]. The number of successive generations which can be studied per 
experiment varies, but is limited by such things as availability of nutrients in 
the surroundings and crowding due to growth.  

The field of microfluidics, which describes the behavior of fluids when 
confined in microscopic spaces, has found many recent applications in life 
sciences. In biochemical and biotechnological process the reagents are often 
expensive or time consuming to produce and sample size is often limited. By 
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fabricating miniaturized reaction vessels on a microfluidic chip, biochemical 
experiments can be performed using a fraction of the reagents. Further, these 
structural motifs can be multiplexed to allow many replicate reactions to 
occur simultaneously under near identical conditions.  

The behavior of microscopically confined fluids also allows for added 
control and reliability as unpredictable aspects of macroscopic fluid mechan-
ics are extinguished in miniaturized systems. The concept of a “lab on a 
chip” [44] entails that several chemical processes can be integrated on one 
miniaturized platform and realizing it has become increasingly more fre-
quent.  

Microfluidic designs have been used to study live bacterial cells. One ex-
ample is the so-called mother machine approach [45]. Here, cells are immo-
bilized by introducing them into a channel which is only slightly wider and 
deeper than the expected cell width. The channel is sealed at one end, open 
at the other and the length of the channel is considerably longer than the 
expected cell length. A progenitor or “mother” cell is captured at the start of 
the experiment and as this individual grows and divides the channel is filled 
with its progeny.  The channel restricts the cells to grow in straight lines 
towards the open end from which cells are released and carried off by the 
flow through the main channel. The design removes or limits the freedom of 
cells to rotate or to move in the direction orthogonal to the direction of the 
channel.  
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Present Work 

Microscopy 
In the studies presented here, all data was collected using an inverted micro-
scope (Nikon Ti Eclipse). To increase sensitivity, phase contrast was gener-
ated externally to the objective and as a consequence the phase contrast im-
ages and fluorescence images were recorded on separate cameras (see Fig-
ure 6).  Phase contrast images of cells at 100 times magnification were rec-
orded using a model CFW-1312M (Scion Corporation) camera at a contrast 
depth of 12 bit. The fluorophores in the sample were illuminated for excita-
tion with collimated light, according to an epi-fluorescence configuration. 
The light source of excitation was provided by lasers (Ar-ion or solid state) 
emitting light at wavelengths appropriate for the excitation-emission charac-
teristics of each fluorophore type. The resulting fluorescence was collected 
by the objective (APO TIRF 100x/N.A 1.49, Nikon), magnified by another 
lens (2X) and recorded by an EMCCD camera (Ixon EM plus (Andor Tech-
nologies). The high numerical aperture, NA, of this objective increases the 
sensitivity by collecting a larger fraction of the light which was emitted by 
the sample. Acquisition of images was performed using µManager [46] a 
free software package which allows for a high degree of flexibility in design-
ing and customizing imaging protocols. 

Microfluidics and live cell imaging 

Integrating methods 
A method combining time-lapsed phase contrast and single molecule fluo-
rescence microscopy could potentially provide insights to the relationship 
between the cell cycle and target molecular species. During experiments in 
which small colonies growing on an agarose pad were studied, several limi-
tations to this approach were recognized: a targeted colony would often drift 
out of the field of view, the pad would dry out unexpectedly, cells would 
displace drastically, and as the colony grew cells would form local double 
layers.  
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manner. Once configured, the properties of the flow can be stably main-
tained for very long time periods. The reservoirs were connected to the port 
regions of the chip using tubing (see Figure 7 a-c). If air bubbles were re-
tained in the tubing the flow could cease and end an experiment. To counter 
this risk, several measures were taken, including degassing the medium. 

 

A trap motif 
Using the mother machine design a great number of cells can be monitored 
during one experiment [45]. If cells grow longer than the channel, the pro-
truding end will be caught in the stream flowing through the main channel 
and the cell will be pulled out of the channel. If this happens to the mother 
cell, e.g. if it filaments, the channel will be rendered empty. Therefore, the 
number of populated channels in the mother machine decays over time.  

An alternative approach was suggested by Mather et al. [48]. Here, cells 
grow in a square compartment in which the depth is the same as the expected 
cell width. As cells form colonies in the traps, they align to the direction of 
the walls and cells which reached the openings are released into the main 
chamber and removed by the flow of medium directed towards the sink. This 
trap motif relaxes the restrictions on cell shape, allowing filamenting cells to 
exit the trap without voiding it. However, the greater freedom to move adds 
complexity to the task of tracking cells over time. The maximum size of the 
colony is set by the dimensions of the trap and if growth conditions do not 
change the number of cells is constant over time.  

We decided to use this design for our chips (see Figure 7 b). The traps 
were designed to maximize the number of cells which could be monitored 
simultaneously in one image acquired by our microscopy setup (see Figure  
6 ). The upper limit is set by the projection of our samples on the chip of the 
fluorescence camera, which images regions of the sample which were 41x41 
µm2. Therefore we designed traps which were 40x40 µm2.  

Immobilization of cells and growth conditions 
In order to immobilize and maintain cells in a monolayer, the depth of the 
trap was fabricated to be the same as the expected cell width. As E. coli will 
alter its width in response to growth conditions, the molds used had to be 
specific for the intended growth condition of each experiment. For various 
growth conditions studied in our experiments, molds with trap depths of 1.1, 
1.0, 0.9, 0.8, 0.7 µm were fabricated. We defined two reference growth con-
ditions which were intended to support fast and slow growth. We used a 
minimal medium, M9, as base for both conditions as it is chemically well-
defined and not fluorescent. Glucose (0.4%) was selected as the carbon 
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source for fast growth, since it is present in the gut and E. coli cells will se-
lectively metabolize it as long as it is present in their environment [49]. For 
slow growth succinate (0.4%) was used as carbon source. For both condi-
tions we supplemented the medium with a blend of amino acids RPMI 1640 
(Sigma-Aldrich). The temperature of the sample was controlled using a mi-
croscope incubator (OKO-lab). For conditions of fast growth we maintained 
the cells at 37°C as in the human gut. For slow growth we maintained cells 
at 30°C. Under the reference conditions we found that cells were sufficiently 
immobilized in the traps which were 0.8 and 0.9 µm deep for slow and fast 
growth respectively.  

Multiplexing and maximum throughput 
The trap motif was found to hold and maintain micro-colonies of ~350 cells 
during slow growth and ~250 cells during conditions of fast growth at any 
given time (see Figure 6). To further increase the number of cells which 
could be monitored during an experiment, we designed a chamber structure 
in which the trap motif was repeated 51 times distributed equidistantly over 
three rows (see Figure 7 a). The expected number of cells residing in the 
chamber was then in excess of 104. The rate at which cell cycles are con-
cluded in one chip was dependent on the generation time, τg, as 104/τg min-1. 
As a reference for cells with a generation time of 30 min, 106 generations 
will have concluded in a chip after 5 hours. 

Chip handling 
Two chip designs were used during the experiments, designated A and B 
(see Figure 7 a and Figure 14 d). Both chips were identical with respect to 
the design of the main chamber. Chip A was intended to allow continuous 
growth in a constant chemical environment. It had three media ports which 
were connected to the reservoirs by tubing and these were referred to as the 
source, running sink and the loading sink (see Figure 7). The role of the 
source was to provide a continuous supply of fresh medium to the cells. The 
role of the sinks was to receive medium which had passed through the chip 
from the source.  

Operating a chip of design A or B has two phases, loading and running. 
During loading, cells are loaded through the running sink and allowed to 
flow to the loading sink (see Figure 7 a and Figure 14 d). The growth medi-
um will flow continuously from the source port to the loading sink, thereby 
avoiding the risk of contaminating the medium source port. Cells flowing 
through the main chamber are captured by introducing pressure waves in the 
medium, by tapping or flicking the tubing until a sufficient number of cells 
have entered each trap. This concludes the loading phase and the running 
sink is re-adjusted to receive medium flowing from the source port. Chang-
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ing the direction of flow is achieved by adjusting the relative levels of the 
reservoirs they are attached to.  

Chip B was designed to allow the user to rapidly exchange the chemical 
environment of the cells while recording the effects of that exchange in real 
time (see Figure 14 d). Chip B has an additional source port as compared to 
chip A. The roles of the running and loading sinks are identical during the 
loading phase of operating chip A and chip B. During the running phase of 
chip B, the magnitude of flow from each source is balanced so that medium 
from both source ports reach the loading sink but only medium from one 
source reaches cells and ultimately the running sink. 
 

Medium exchange 
Fluids behave very differently when confined in macroscopic as compared to 
microscopic systems. One characteristic trait of microscopic systems is the 
lack of turbulent mixing of fluids. As fluids meet they will form stable lami-
na at the interface. Here, mixing is slow as no turbulence is present. There-
fore lamina containing different compounds can co-exist inside a microfluid-
ic device with minimal exchange. In the manifold region of the chip (see 
Figure 8 and Figure  14 d) the flows from the two sources meet and estab-
lish a stable laminar interface. Medium from one source, the active source, 
flows towards both the running and loading sink. As it flows towards the 
running sink, it passes the chamber and the cells. The medium flowing from 
the other source, the passive source, proceeds only towards the loading sink. 
Inert polystyrene particles are included in the medium in one of the source 
reservoirs as reporters of the bounds of the corresponding lamina inside the 
chip, allowing the user to configure the flows. During running of chip B, the 
active source reservoir will be elevated higher than the passive and to exe-
cute the medium exchange, their respective elevations are exchanged. This 
action can be performed by linear actuators and its execution program to 
synchronize with the acquisition program. By doing so the time-delay after 
executing the switch was determined to be 2 s (see Figure 14 e and supple-
mental under IPTG induction).  
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Data uniformity 
Measurement noise can occur in microscopy data as variations in the focus, 
the background intensity, the contrast, the position of the sample relative the 
field of view, in the expected timing of acquisition etc. To reduce variations 
in our data, the microfluidic protocols were optimized (see paper II under 
Materials and methods). The microscope had an active focusing function 
(Perfect Focusing System, PFS, Nikon). However, this system was found to 
be sensitive to temperature variations and consequently minimizing fluctua-
tions caused by the sample incubator improved focusing. The phase contrast 
camera would at times register images in which the total dynamic range was 
less than half of the average. This phenomenon was countered by introduc-
ing a feedback in the acquisition routines which would decide if a darker 
image was recorded in the phase contrast channel and if so re-acquire until 
an acceptable image was obtained or a maximum number of attempts had 
been made.  

Anti-drift acquisition 
The sample would occasionally drift out of the field of view during the 
course of an experiment. We developed an active anti-drift algorithm which 
would correct for displacements between time points. This would require the 
user to record a reference image for each position at the start of the acquisi-
tion. The correction for each subsequent image was computed as the maxi-
mum cross-correlation between a test image and the reference image. Com-
puting this in the frequency domain is fast and this allowed the correction to 
execute within 20 ms.  

Active image registration 
Phase contrast images and fluorescence images were recorded using two 
separate cameras. Combining information derived from the different image 
types required a way to translate locations between images. This is often 
referred to as image registration. An active registration method was devel-
oped for our data. Since the fluorescence and phase contrast images hardly 
contain any common information, these two data types were deemed insuffi-
cient to base registration on. As an alternative source of registration infor-
mation a bright-field image, in which the sample is exposed using a white 
light lamp, could be recorded using the fluorescence camera. The bright field 
image and the phase contrast image contained sufficient common infor-
mation to construct an active super-resolved registration function. Conse-
quently the acquisition of a phase contrast image and fluorescence image 
was accompanied by the acquisition of a bright field image.  
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Trap detection 
The trap motif could be used to span a two-dimensional coordinate system 
for each micro-colony. The edges of the trap walls could be detected in the 
phase-contrast image with super-resolution accuracy. However, the edges of 
open ends did not generate distinct signatures in the image. This was for two 
reasons: Firstly, there was no attachment between the PDMS and glass at 
these edges and the structures which were sought reside outside of the focal 
plane. Secondly, an interfering light phenomenon related to the generation of 
phase contrast appeared in the image which obscured the edge. Attempts to 
remove it by optimizing the phase contrast configuration proved fruitless. 
Detecting the open edge of the trap was therefore uncertain within several 
micrometers. By selecting a somewhat arbitrary position for one open edge 
and expecting that the opposing edge was located a known distance away, 
i.e. 40 µm, a coordinate system could be erected in the first image of the 
series. The interference phenomenon was distinct for each trap and did not 
vary significantly over time. A signature profile could be extracted for each 
image. By comparing the signature profile at each time with the first record-
ed profile it was possible to maintain the coordinate system with super-
resolution accuracy between images. 

Image intensity normalization 
To counter variations in image intensity, an active intensity normalization 
method was applied to each phase contrast image. A further consequence of 
the interference phenomenon situated at the open edges of the trap was that 
cell signatures here were distorted. For this reason analysis efforts were 
abandoned in the afflicted regions, the bounds of which were determined by 
manual inspection. The active region in which cells and molecules could 
contribute to the analysis was roughly 40x30 µm2. Each raw phase contrast 
image was cropped according to the predicted bounds of the trap, rescaled in 
intensity and finally reduced in size uniformly by 58%. The size reduction 
was performed to increase computational speed in subsequent protocols.  

MicrobeTracker 
The process of outlining cells in an image is often referred to as cell segmen-
tation. A software suite dedicated to automatic segmentation and tracking of 
cells in phase contrast images, MicrobeTracker [50] was used and further 
developed for our data. MicrobeTracker is implemented in MATLAB and 
uses a composite detection strategy where binary cell clusters are first pre-
dicted and subsequently refined by applying an active contour model to de-
termine the cell outline. However, phase contrast was less efficient for our 
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cells which were closely grouped and the signature of an individual cell be-
came highly dependent on its local environment.  

Segmentation of an image can be done with or without prior knowledge 
of where cells are located. The former case is referred to as de-novo segmen-
tation, which we found to be very challenging for our data. The latter case, 
i.e. when known previous locations are used to predict where the cell is cur-
rently located, was considerably easier. This will be referred to as tracking 
based segmentation. In the initial stages of development we would correct 
errors in de-novo segmentation performed on the first image manually then 
perform tracking based segmentation of the subsequent images. 

Cell mobility and tracking 
When tracking cells over time we quickly realized that displacements would 
often overwhelm the algorithms. The first action was to improve the time 
resolution in imaging. We increased the frequency of acquisition from one 
image per 3 min to one per 30 s. This dramatically improved our ability to 
track cells. The motion of cell mass in the traps had at least two time scales. 
The longer time scale is related to growth rate and could be described by 
viewing the micro-colony as a continuum rather than a discrete collection of 
individuals. The flow of cells was directed toward the openings of the traps. 
The average rate of displacement was dependent on the location of cells 
relative the mid-line of the trap at which point the net flow was zero. The 
velocity increased exponentially with the distance from the midline. Every 
line in the trap parallel to the mid-line contained a roughly equal amount of 
cell mass which was expanding at the same rate. The rate of expansion at a 
particular line was then the sum (or integral) of all the lines which separate it 
and the mid-line. The velocity at the open edges of the trap would therefore 
be considerably greater as compared to the center of the trap.  

The second and shorter time-scale required regarding the micro-colony as 
discrete individuals. Local displacements appeared to occur randomly within 
the micro-colony and could re-arrange sub-regions of it in less than one sec-
ond. A cell which displaced would leave a gap in the colony and neighboring 
cells would proceed to fill it. Effects were local, however, the closest neigh-
boring cells could displace drastically. As the time-scale of these displace-
ments approached the exposure time of the acquisition, increasing the time 
resolution to account for these displacements was deemed practically impos-
sible.  

We therefore continued to manually correct segmentation between imag-
es. With manual curation of segmentations, 100 subsequent images (~50 
minutes of experimental time) could be analyzed in 15-20 h of full time la-
bor of one analyst.  
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Active pole tracking 
We guessed that if we could improve the initial guess for the location of 
cells poles, we could improve tracking. The strategy was to collect true ex-
amples of cell poles and extract a signature set of feature values and con-
struct a probability model using these. During tracking, feature values sam-
pled at randomly selected positions in the vicinity of the last known location 
of the pole could be evaluated using the model (see paper II, supplemental 
under Pole searcher and Classification). Two expectations of cell motion 
were incorporated into the initial guess. First, to capture the continuum mo-
tion of the cell colony (see under Cell Mobility and tracking), estimates of 
local displacement were made using the optical flow method [51]. Second, 
as cells were expected to grow, the increased separation between poles due 
to growth was estimated using a finite difference approximation based on the 
cell length at the two previous time points (see paper II, supplemental under 
Pole searcher). The introduction of the pole searcher brought with it a huge 
improvement to the quality of tracking. 

Division classifier 
It was noticed that many cells were divided incorrectly. To develop a more 
accurate division classifier, we began by defined image features we believed 
were related to division. Next, examples were collected of true and false 
divisions and the corresponding feature values were extracted. Using linear 
discriminant analysis, an optimal linear threshold for separating the two clas-
ses was obtained (see paper II, supplemental under Division function). This 
threshold was then applied to the extracted feature values of each cell at each 
frame and the cells which exceeded the threshold were classified as divided. 
This addition greatly improved the confidence in the complete cell cycles we 
obtained from the analysis.  

The division classifier was later analyzed for its accuracy and precision 
by monitoring cells which express fluorescently labelled division proteins, 
FtsQ-GFP [52]. FtsQ-GFP forms a band which contracts during cell divi-
sion, ultimately collapsing to a point [52]. The cells were imaged at a fre-
quency of 1/1 min-1and it was found that as the contraction ended the point 
vanished in less than one minute. A second division classifier, a fluorescence 
classifier, was devised which could identify this abrupt loss of fluorescence 
signal (see paper IV, figure 2 and supplemental under Detection of FtsQ-
GFP signal drop in single cells). The phase classifier was found to be slight-
ly early, on average dividing cells ~1 minute before the fluorescence classi-
fier. The precision of the phase classifier was determined to be sufficient as 
the standard deviation of the difference between the predictions of the phase 
classifier and the fluorescence classifier was 2.7 min (see paper IV, figure 2). 
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Management of tracking errors 
The method was still too inaccurate for autonomous work. By developing a 
method capable of autonomously terminating erroneously segmented cells at 
each frame we hoped to improve the quality of the remaining data without 
the need for manual corrections. As in the case of the division classifier, an 
approach utilizing a binary class description of the task was adopted as in the 
cases of poles and division classification (see paper II, supplemental under 
First error detector). The effect of the introduction of the error classifier on 
the quality of the data was striking. As the pole searcher enabled the algo-
rithm to cope with smooth cell displacements, the error classifier would ter-
minate many of the errors committed as a result of fast, discontinuous dis-
placements. The stability and reliability of the algorithm was markedly in-
creased and as a result the length of the intervals under which we could al-
low it to analyze independently increased.  

One of the features which were used for this error classifier was the inter-
section between a cells outlines and those of its neighbors. This feature is a 
rational choice since cells should not overlap. However, the intersection 
between two cell outlines is the same for both cells and as a consequence 
correct cells could be classified as erroneous. The termination of cells would 
cause the number of remaining cells to decrease in a probabilistic fashion as 
the segmentation process advanced. Further, the error classifier would not be 
as effective as surviving cells would find themselves isolated. 

Active cell tracking 
In order to slow the decay of our segmentation, we developed an active cell 
tracking algorithm, which would attempt to relocate the cells which were 
classified as erroneous. An additional error classifier was also developed 
(see paper II, supplemental under Cell tracker and Second error detector). 
With these additions the segmentation process was more accurate and suffi-
ciently reliable to work autonomously. The processes could maintain an 
acceptable number of remaining cells per trap throughout 1000 subsequent 
time points (see paper II, figure 2 b). This corresponded to 8.3 hours of ex-
periment time and an average of ~1000 complete cell cycles were acquired at 
each position. Unfortunately, the segmentation process was now extremely 
slow and to speed up the algorithm we developed a parallel computing ver-
sion which would allow an image to be processed in 5 minutes.  

De-novo segmentation 
To counter the decay of the segmentation process, we manually corrected 
images at intervals of 100 time points and allowed the re-found cells to re-
plenish the colony. At this stage we had avoided the inevitable, the devel-



 38 

opment of an accurate de-novo segmentation algorithm, for as long as possi-
ble. As the strategy of binary classification had proven successful in its pre-
vious applications, we adopted the same approach for cell classification. The 
de-novo segmentation methods will when applied to an image, detect cells 
correctly, incorrectly or not at all for a given set of parameters. By perform-
ing the segmentations using a range of parameter sets, a large proportion of 
all cells could be found correctly at least once. To discard erroneous cells an 
error classifier was developed (see paper IV, under Materials and methods, 
Cell segmentation and tracking). Further, a likelihood of a remaining cell 
being a true cell could be derived and used as a score to select the most like-
ly instance of a cell which was detected several times. 

The de-novo segmentation method was applied to detect cells in all phase 
contrast images of a series. In the first frame, it was applied to the entire 
image. In subsequent frames it was applied, after all other operations had 
been performed, on the regions of the image which were vacant. The cells 
which were found were added to the segmentation process. This transformed 
the method to a non-decaying process which would maintain a quasi-steady 
number of segmented cells per trap (see Figure 9 right). Under conditions of 
fast growth, the de-novo segmentation algorithm was found to detect roughly 
~140 cells per image which represents ~60% of the total number present. 
The combination of continuous de-novo segmentation and tracking based 
segmentation increased the number of cells in the first ~30 images (15 min) 
of until reaching a steady state of ~200 cells per image (see Figure 9 right). 
This represents 90 % of the cells that are expected to be present in the region 
of interest in each trap.  

An integrated method 
The rate at which cell cycles are completed is expected to be 5.1 min-1 and 
position under conditions of fast growth and 2.4 min-1 and position under 
conditions of slow growth (see paper IV, figure S6). The segmentation and 
tracking method was estimated to capture more than 60% of all cell cycles 
(see paper IV, supplemental under Efficiency in acquisition of cell cycles). 
For example if six micro-colonies were monitored in parallel, ~20 complete 
cycles would be obtained per minute of experiment time during fast growth 
and ~15 cycles during slow growth. Fluorescent molecules were detected 
with super resolution accuracy (see Figure 6 right) and the obtained coordi-
nates where superimposed on the segmented outlines (see Figure 6 left) us-
ing the registration information. The intracellular locations were determined 
by projecting these coordinates on the major (axial) and minor (radial) axis 
of the cells they were determined to belong to. The method was now able to 
meet all the stipulated criteria and was completely automated from the start 
of acquisition. 
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Variations over space and time 
The growth rate, birth length, division length and cycle time, did not vary 
between different micro-colonies which were imaged in parallel (see paper 
IV, figure S8). This indicated that conditions were uniform for all micro-
colonies in the microfluidic chips during acquisition. However, some varia-
tion did occur over the time course of the experiments. For example, during 
the beginning and the end of acquisition, the average cycle times were lower 
(see paper IV, figure S9). This was more noticeable for slow growth than for 
fast growth. Further, this trend also extended to the remaining cycle observ-
ables, and was always more pronounced for slow growth than for fast 
growth. This systematic variation over the course of our experiments ap-
peared to be a consequence of the time-delayed nature of the cell cycle. At 
the beginning and end of the acquisition, only cells which divide early could 
contribute to the set of observed cell cycles.  

A steady state for the average cycle time was reached after 50 minutes for 
fast growth and 200 minutes for slow growth (see paper IV, figure S9 lower 
left). This constituted roughly twice the generation time for each condition. 
This phenomenon should occur during any observations of cell cycles and as 
a rule of thumb, the acquisition time should always be much longer than four 
times the expected generation time.  

Further, the time before losing a cell from the analysis, either by the cells 
physically vacating the trap or by failing to track them was well described as 
an exponential random variable. For this reason any cell which divided early 
retained a greater probability of contributing to the set of observed cell cy-
cles. The increased representation in our data for early dividers could explain 
two inconsistencies; the faster growth expected from the cycle time and the 
average size at division being less than twice that of the average birth size. 
We noted that the magnitude of these inconsistencies decreased as our analy-
sis accuracy increased. However, it was not possible to fully eliminate the 
phenomenon since no information could be gathered from cells which had 
vacated the traps.  

Interdependencies of cycle observables 
Dependencies between variables are often expressed in terms of correlation. 
The Pearson correlation coefficient, r, will give a result between -1 and 1 
and the value reflects the amount of the variation which can be accounted for 
by a linear model. However, if the sample is mixed and the different types 
are not related, the correlation coefficient will represent the mixture rather 
than one distribution.  Our data contained correctly and incorrectly segment-
ed and tracked cells. To allow cell cycles to contribute according to frequen-
cy rather than the observed values, we compared the joint relative frequen-
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cies to the density function of the bivariate normal distribution and obtained 
the correlation coefficient, ρ, as a parameter of the best fit. 

For example, the correlation between the observed growth rate, µ, and the 
growth rate expected from the cycle time (see introduction under Require-
ments to conclude a cell cycle), was ρ= 0.50 ± 5.2·10-5 (95% DSCI) for fast 
growth and ρ= 0.70 ± 4.2·10-5 (95% DSCI) for slow growth. The corre-
sponding Pearson correlation coefficients were r=0.50 and r=0.49 for the 
same samples. In the case of fast growth both estimates were consistent. 
However, in the case of slow growth they diverged. When inspecting the 
joint relative frequencies (see Figure 11) the eccentricity of the data ap-
peared to be greater for slow growth, than for fast Growth, as indicated by ρ 
but not by r. It should however be noted that the alternative method requires 
considerably greater statistical power. In the cases where this power is 
strained, the Pearson correlation coefficient will be presented also for a 
comparison.  

Cycle time and growth rate 
As was seen in the previous section in the case of slow growth, the depend-
ency between the growth rate and the growth rate expected by the cycle time 
were such that they represented each other relatively accurately. For fast 
growth, the correlation was moderate. Therefore using for instance the cycle 
time of an individual as a representative of its growth rate would entail a 
weaker prediction for cells under conditions of fast growth than under condi-
tions of slow growth. This could potentially explain the variation of the 
growth rate for slow growth during the early and late stages of our experi-
ments (see paper IV, figure S9 lower right). By extension, similar co-
dependencies between birth length and cycle time and division length and 
the cycle time could explain the variations we observed over the course of an 
experiment for slow growth (see paper IV, figure S9). 
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conditions of fast growth. The search time for LacI was found to be ~30-60s, 
in living cells [39]. Taken together, this suggested that lapses in regulation 
should occur less frequently than once per cell cycle. The method we had 
developed could potentially allow us to determine the frequency and the 
distribution of expression events over the cell cycle, if we could monitor 
expression from the lactose operon over many cell cycles.  

Constructs for monitoring burst of expression 
Choi et al. studied the expression from the lacY gene by genetically replac-
ing the gene with a reporter construct, Tsr-Venus (see introduction) [54]. By 
studying the same strain we could profile the expression of the lactose oper-
on. The lacI gene is auto-repressed and a cell cycle dependent lapse of re-
pression could possibly lead to bursts of expression. The Tsr-Venus con-
struct cannot be used to gather information about a TF, such as LacI, which 
relies on its mobility in the cytosol for its function. However, a previous 
study [39] suggested that LacI-Venus molecules could be immobilized for 
sufficiently long (~1 ms) while non-specifically bound to DNA to be detect-
ed. By studying expression of both lacI and lacY we could potentially [39] 
quantify the frequency and amplitude of expression events and determine 
any dependency on the cell cycle. 

Counting fluorescent molecules as they are synthesized  
Accurate counting of fluorescent particles requires either completely photo-
stable fluorophores which do not bleach or blink significantly or that all 
molecules can be irreversibly bleached by observation. As the bleaching 
regime was reported previously [41, 54] we attempted to bleach molecules 
between observations with various durations and intensities of laser expo-
sure. When continuously exposing cells expressing Tsr-Venus we found that 
the number of molecules would decrease initially but that fluorescent spots 
would continuously appear.  Further, it was realized that the cells were much 
more sensitive to laser exposure than anticipated. For the regimes which they 
seemed to be able to cope with, the number of fluorescent molecules was 
expected to decrease by 20% per observation. To account for the remaining 
fluorescent molecules we developed a maximum likelihood method to esti-
mate how many new molecules had been produced since the last observation 
(see paper II, under Materials and methods). The accuracy of this estimation 
was however dependent on molecules bleaching quickly. 

Gene expression rates over the cell cycle 
Cell cycles were synchronized at the time of birth and the observed average 
rates of expression for each construct was derived over the cell cycle (see 
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An in vivo chase assay 
An experiment which we hoped could allow us also to measure the dissocia-
tion time of LacI was designed (see Figure 14 a). The reporter construct was 
a fluorescently labeled version of LacI which had been mutated so as to be 
insensitive to chemical induction by IPTG, designated LacIs-Venus [55]. The 
gene coding for this construct was introduced into the chromosome to re-
place the native lacI gene. LacI and LacIs will when fused to a fluorescent 
protein, form dimers instead of tetramers [39].  

The wild type lacI gene was then introduced on an extra-chromosomal 
genetic element, or plasmid, with a strong arabinose sensitive promoter, 
pBAD, which would express only when arabinose is present in the medium 
[56]. This plasmid was then introduced into the strain which carried the Lac-
Is-Venus construct. Under conditions when arabinose was absent and IPTG 
was present in the medium, the majority or at least a significant proportion 
of all LacI molecules were expected to be LacIs-Venus and only LacIs-Venus 
molecules were expected to bind to the operator sequence. If arabinose was 
introduced in the medium and IPTG removed, the population of LacI mole-
cules was expected to shift to mainly consist of non-fluorescent LacI tetram-
ers, which could associate to the operator sequences. Each of the non-
fluorescent particles could find the operator sequence at least as fast as a 
LacIs-Venus molecule. In this way re-binding of the operator site by LacIs-
Venus could be avoided (see paper III, under Materials and methods). 

Occupancy of the operator by LacIs-Venus could be detected by imaging 
the cells at long exposures, ~4 s. The lactose repressor was expected to re-
main bound for a substantial part of the cell cycle. Using microfluidic chip 
model B, the chemical environment of the cells could be rapidly exchanged 
to contain either IPTG or arabinose. Imaging a trap would bleach a fraction 
of LacIs-Venus molecules and therefore a position was only imaged once 
during an experiment. As there were 51 traps available in the chip, this be-
came the upper limit to the number of time points which could be observed 
(see paper III, under Materials and methods). 

After the experiment, the medium could be exchanged to deplete the cells 
of wild type LacI tetramers by growth. After sufficient recuperation, the 
experiment could be repeated as many times as required with high precision 
(see paper IV, figure 1 e). 
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Figure 14. (a) The single-molecule chase assay. Yellow: fluorescent LacI dimers red 
box: lac operator, Blue: non-fluorescent wild-type LacI tetramers. (b) Fluorescence 
images (4-s exposure) taken before and at different time points after the removal of 
IPTG. Scale bar, 4 μm. Red circles : detected operator-bound LacI-YFP. (c,d) Mi-
crofluidic chip B (d) contains 51 traps as illustrated (c). (e) Medium switch–induced 
transcription factor dissociation and association. (f) Automatically segmented cells 
using a phase-contrast image. Scale bar, 4 μm. (g) Intracellular positions of bound 
LacI-YFP molecules (x axis) mapped to the cell replication cycle (y axis). Individual 
cell replication cycles are synchronized so that the time of 0 min always implies a 
cell length of 4.25 μm. Horizontal lines:  average times for cell divisions. 

Non-equilibrium models of regulation 
Using the chase method we determined that LacIs-Venus would dissociate 
from lacO1, after 5 minutes and from lacOsym, after 10 minutes (see paper IV, 
figure 2 a). The result for the latter operator was inconsistent with the equi-
librium occupancy model, given the observed repression fold. Instead we 
investigated three non-equilibrium models which could possibly account for 
the observations we had made (see paper IV, figure 3). 

One of these (see paper IV, figure 3 d) was based on the reports by 
Kuhlman & Cox of gradients of transcription factors in the cell [57]. One 
possible implication was that local concentrations surrounding the operator 
site could be higher and lead to faster association than we could observe 
using a method which relied on chemical induction to start LacI search from 
a uniformly distributed starting point in the cell.  

 
This model could potentially be tested using the automated method we 

developed.  The intracellular distribution of non-specifically bound LacI-
Venus molecules could be determined using short (2 ms) exposures to locate 
fluorescent TF molecules as in paper II. Kuhlman & Cox reported that LacI 
molecules would remain proximate to the chromosomal location from which 
they were expressed [57]. To test this we studied several strains with LacI-
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Venus encoded at different chromosomal positions. To ensure that only non-
specific interactions were monitored, all strains had the specific operator 
sites removed. The results were compared to localization data of specific TF 
binding at the origin, mid replichore and the terminus. 

From our observations we could not confirm that the chromosomal loca-
tion of the lacI-venus gene influenced the localization of LacI-Venus (see 
paper III, figure S5 a-b). We could however see local gradients in the cell 
(see paper III, figure S5 a). To determine the importance of DNA binding on 
localization, we also studied a version of LacI-Venus, which has been mutat-
ed so that its DNA binding property was impaired [39]. We found that this 
version was uniformly distributed over the cell (see paper IV, figure S5).  

We concluded that under our experimental conditions, gradients of LacI 
molecules were established by non-specific interaction to all DNA rather 
than the chromosomal location from which they were expressed. Further, 
using stroboscopic illumination it was possible to track the movements of 
individual LacI-Venus molecules within cells in the microfluidic chip. By 
mapping the trajectories to an intracellular coordinate system, it was deter-
mined that LacI-Venus traversed the cell within seconds (see paper IV, fig-
ure S6 and supplemental under Are there spatial gradients of LacI in rapidly 
growing cells?).  We could therefore exclude this model as the cause for our 
findings. 

Cell cycle dependent lapses in TF regulation 
The dependency of regulation of gene expression on the phases of the cell 
cycle was investigated by time-lapsed microscopy of cells expressing LacI-
Venus molecules and having one lacOsym operator available for binding. 
Occupancy of the operator site would be detected as diffraction limited spots 
in fluorescence micrographs obtained by exposing cell colonies for long 
durations (4s) at a frequency of 1/3 min-1. If occupancy was perturbed at cell 
division or at some distinct cycle coordinate corresponding to the replication 
of the operator site, this experiment could possibly allow us to observe it as 
lapses in occupancy. The resulting fluorescence information for individual 
cell cycles revealed no distinct patterns. We again tried to synchronize our 
observations at division and study the average number and intracellular loca-
tion of LacI-Venus at time points after division. This did not help us arrive at 
any conclusions. We tried filtering the data on the basis of similar durations 
for cell cycles, with disappointing results. Finally we tried sorting observa-
tions according to the length of the cells. This provided a greater coherency 
in the localization patterns of LacI-Venus bound to the promoter. Further we 
found that if cell cycles were synchronized at the time the cells were a spe-
cific length, the coherency in localization was maintained (see Figure 15). 
However, no distinct lapses of occupancy corresponding to the search time 
of LacI were observed even when synchronizing our data in this way. 
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Figure 15. Occupancy of the lactose promoter by LacI-Venus over the cell cycle. (a) 
LacI-Venus binding to lacOsym. (b) LacI-Venus localization without a specific opera-
tor sequence. (a-b) Intracellular location are organized so that at time zeros all cells 
are 4.25 µm in length. (c) Data as in (a) organized according to time after division. 

Investigating a post-replication refractory period for gene 
expression  
Although we could not confirm any cell cycle dependent perturbations to 
occupancy of the lactose promoter, we could not exclude that such events 
could be masked by averaging. We estimated that a lapse in occupancy of at 
least 10s would accompany replication of the lactose promoter. To achieve a 
repression fold of 1000 times, the operon should be expressed on average for 
1-2 s per cell cycle. We therefore hypothesized there was some mechanism 
to dampen or silence expression during the time required for a transcription 
factor to associate to the promoter after replication. We designed an experi-
ment to test this hypothesis which is described in detail under (Appendix: 
Measurement and determination of the maturation time of Venus in live bac-
terial cells growing in a microfluidic chip). The experiment, the results and 
their implications for gene expression are discussed in the following sec-
tions. 
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for when estimating the fluorescence response. The reported maturation time 
for Venus is 7 min [41, 58]. By assuming that the maturation time was an 
exponentially distributed random variable and that molecules are diluted 
exponentially according to the average growth rate we determined the matu-
ration time of Venus under our experimental conditions was 54 minutes (see 
Appendix: under Results). The maturation time dictates the certainty in pre-
dicting when a fluorescent molecule was synthesized. For example if a mol-
ecule is made at a known time the probability that the molecule would ma-
ture and fluoresce within twice the maturation time is 0.86. Under our condi-
tions this would entail that molecules could mature and become fluorescent 
up to 3 times the generation time after they were synthesized. The implica-
tion of these findings was that we could not determine cell cycle dependent 
patterns for the synthesis of molecules either from individual cell cycles or 
by averaging over many cell cycles, regardless of how they were compared. 

Information on the kinetics of localization of molecules as in the case of 
TF occupancy appeared to be less sensitive to the effects of a long matura-
tion time. However, an implication was that the majority of all reporter mol-
ecules inside a cell were non-fluorescent. Therefore the variance in the fluo-
rescence information was primarily related to maturation rather than varia-
tions in copy number. Under such conditions, our observations had to be 
combined and averaged in order to draw conclusions. Averaging can destroy 
information on the underlying distributions of a mixed sample. Consequently 
it was necessary to find ways of comparing data from individual samples 
which separates the underlying distributions. In the cases of measuring the 
association and dissociation times of LacI-Venus, it was possible to syn-
chronize molecules with chemical cues and then compare molecular obser-
vations according to the time that elapsed since synchronization. In the case 
of occupancy of the lactose promoter LacI-Venus over the cell cycle, it was 
possible to achieve a greater separation of distributions by organizing our 
data according to size rather than according to time elapsed after division. 

Regulation of the cell cycle 
Chromosome management 
Our results for the occupancy of the lac promoter suggested that the chromo-
some was managed according to size rather than time after division. DNA 
replication is an essential process involving the chromosome and during 
conditions of fast growth, the chromosome of E.coli is expected to be in a 
constant state of replication. To study the replisome, we utilized that the ɛ 
subunit of the polymerase III holoenzyme, DnaQ, can be genetically fused 
with a yellow fluorescent protein, Ypet, without effects on growth [59]. The 
reporter construct, DnaQ-Ypet, is immobilized during active replication and 



 53 

can be detected using fluorescence microscopy as diffraction limited spots 
[59]. We studied cells carrying DnaQ-Ypet using our method under condi-
tions of fast growth. We found no distinct location patterns when organizing 
the resulting intracellular locations of replisomes according to the time after 
division (see paper IV, figure 3 d). Further, we did not find any distinct peri-
ods of sensitivity for the average number of replisomes per cell (see paper 
IV, figure 3 d lower).   

When we organized the data according to cell size, here estimated by cell 
volume, we found that the coherency of the data increased substantially (see 
paper IV, figure 3 c). Replisomes were clustered in replication sites inside 
the cells and these sites would progress as intracellular trajectories over the 
cell cycle and bifurcate during a short size interval. These trajectories ap-
peared to be overlapping. A size interval during which the average number 
of replisomes per cell would increase at a higher rate (see paper IV, figure 3 
c lower) could be observed. We drew the conclusion that cells initiate repli-
cation according to size rather than the elapsed since division. 

Replication initiates according to size 
By assuming that the initiation size was normally distributed we could derive 
a putative initiation size as the best fit of a cumulative normal distribution 
function to the observed average number of replisomes per cell. We found 
that under this model, the initiation volume was 4.0 µm3 (see paper IV, fig-
ure 3 c lower red solid line). By organizing our data in time from the time 
cells achieved the initiation size, we found that the coherency was main-
tained (see paper IV, figure S4). Replication initiation was reported to be 
regulated according to size by Hill et al. for cells under condition of fast 
growth [60]. However, Kleckner & Bates reported that initiation was regu-
lated according to time after division under conditions of slow growth [26].  

We were therefore curious to see how replisomes behaved under condi-
tions of slow growth. Again, organizing our data according to size gave a 
more coherent result as compared to time after division (see paper IV, figure 
2 a-b). As in the case of fast growth we found that replisomes were clustered 
in replication sites which formed trajectories over the cell cycle. Here, these 
trajectories were not overlapping (see paper IV, figure 2 a). We found a dis-
tinct size interval during which the number of replisomes increased (see 
paper IV, figure 2 a lower red solid). The initiation volume obtained for slow 
growth was determined to be 1.8 µm3, which did not match that obtained 
during fast growth.  

The origin during the cell cycle 
As the replisome trajectories were overlapping we studied the oriC region 
under conditions of fast growth. To do so, we introduced the gene coding for 
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a fluorescent reporter construct, MalI-Venus, near the bglG locus on the 
chromosome. MalI is a native TF of E.coli which associates to an operator 
site, malO, near the promoter of the maltose operon [61]. To allow MalI to 
bind at bglG, we introduced malO sites at this locus. Detection could then be 
achieved using the same approach as when imaging specifically bound LacI-
Venus occupying the lactose promoter. To ensure that we only would moni-
tor specific binding to the bgLG locus by MalI-Venus, we removed the na-
tive malI gene and its operator sites completely. We found that the oriC lo-
cus was retained in specific sites inside the cells and that the trajectories over 
the cell cycle would bifurcate over the same size interval as the replisome 
trajectories (see paper IV, figure 2 e). The average number of oriC loci per 
cell would increase dramatically over a short size interval (see paper IV, 
figure 2 e lower red solid). However, the predicted initiation volume from 
this data suggested that initiation was most likely to occur at 3.45 µm3. 

A time-delay in replication initiation 
The initiation sizes for fast growth indicated by replisomes and oriCs were 
inconsistent. Further, the production of oriCs was expected to follow initia-
tion of replication rather than precede it. These apparent inconsistencies 
could however, be explained by a time-delay separating the replication of the 
arms of the chromosome [62]. A proposed model of chromosome manage-
ment during fast growth is shown in Figure 17. According to this model, 
newly divided cells have four oriCs (white circles) and six replisomes (red 
circles) clustered into three intracellular replication sites (see Figure 17 top). 
Further into the cell cycle the two replisomes residing in the inner most rep-
lication site terminate their corresponding round of replication. At this size, 
the 4 oriCs and remaining 4 replisomes reside in two sites which are sym-
metrically spaced around the mid-section. Replication initiates at the volume 
suggested by the oriCs, i.e. at 3.45 µm3 which is indicated in Figure 17 as 
the upper dashed white line. This is also the size at which the sites bifurcate. 
This results in the placing of 8 oriCs in four sites. Four new replisomes as-
semble to replicate the arms of the chromosome which are not delayed, and 
these are placed in four sites. The four replisomes which correspond to the 
previous rounds of replication are placed in the two sites closest to the mid-
section. Therefore, the outer paths contain one replisome each and the inner 
sites contain three replisomes. As the cell grows to 4.0 µm3 the time-delayed 
chromosome arms are replicated (Figure 17 white dashed line) and four new 
replisomes are added, one to each site. Therefore the relative increase on the 
outer sites is 50%, while it is 33% on the inner sites. The time-delay has 
been reported to be 7 minutes under conditions of slow growth. The size 
interval 3.45-4.0 µm3 represents 6.9 min according to the average growth 
rate during fast growth.  
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for fast growth. Our observations were therefore consistent with Donachies 
prediction.    

Regulation of division timing 
The average E. coli has to expand its envelope to twice the size at birth, to 
initiate and terminate a round of replication, to segregate chromosomes and 
to divide the cell (see introduction under Requirements to conclude a cell 
cycle). To accomplish the task of doubling the cell during exponential 
growth, it is necessary to regulate birth sizes and the cycle time. This can be 
achieved by having a regulatory mechanism which is either a timer, which 
divides the cell according to the time which has elapsed since division, or a 
sizer, which divides the cell according to size. It was recently proposed that 
E. coli growing under conditions of fast growth would divide according to a 
sizer and a timer [63]. Here the authors investigate the division rate of E.coli 
and devise a phenomenological stochastic model in which the time spent in 
the cell cycle until achieving a given size increases the propensity of the cell 
to divide.  

Before a cell is ready to divide it must have completed a round of replica-
tion. This round is for both fast growth and for slow growth as studied in our 
experiments, not initiated within the same cell cycle, but is instead inherited 
from an ancestor cell. We knew when in the cell cycle the average round 
initiated. Further, by assuming that termination of replication occurred in the 
replication site at the center of the cell (see Figure 17 top), we could deter-
mine the length at which it occurred. This allowed us to compute average 
replication time, or the C-period for both growth conditions which was 
found to be 56 min for fast growth and 63 min for slow growth (see paper 
IV, supplemental under Estimates of the C and D periods). Also, the time 
from termination to division, or the D-period, could be computed in this way 
and was found to be 25 min for fast growth and 50 min for slow growth.  

Since these were averages, the joint distribution between the initiation 
length and the corresponding division time were not known to us. The least 
assuming model was that these were perfectly correlated, i.e. that division 
was executed after time-delay of C+D min after initiation, as in the Cooper-
Helmstetter model. This control system was a sizer followed by a timer. We 
simulated cell cycles according to the cycle regulator using the experimen-
tally determined values and the average growth rate for each condition (see 
paper IV, supplemental under Cell cycle simulations) and stored sampled 
values of birth length and cycle times for each cycle. The birth lengths and 
cycle times observed during our experiments were jointly distributed accord-
ing to an uncertainty relation (see Figure 18 left) in which variation is con-
served between these properties. The weight of uncertainties was shifted 
according to the growth conditions. During conditions of fast growth, the 
variation in birth length was greater than under conditions of slow growth. 
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and under Cycle time and growth rate). Further, the variance in growth rate 
under conditions of fast growth was 40% greater than the variance under 
conditions of slow growth. The variance in the logarithmic expansion was 
very similar between the two conditions. Under conditions of fast growth 
this was due to a greater population variance in growth rate as compared to 
slow growth.  

It appeared that E. coli had an additional uncertainty relation, between the 
cycle time and the growth rate. The exponential growth model assumes that 
individuals maintain their growth rate throughout the duration of their cell 
cycle. The growth rate of a mother cell and daughter cell are moderately 
correlated for slow and for fast growth alike (see paper IV, figure S10, row 
4, column 3-4). The growth rates of sibling pairs are highly correlated during 
slow growth and even more so during fast growth (see under Interdependen-
cies of cycle variables and paper IV, figure S10, row 2, column 3-4 and). 

If the growth rate of the mother alters over the cycle, we would expect 
that the adherence of the data to the exponential model would be worse in 
the cases where mother and daughter have greater differences in their growth 
rates. We do not observe such a dependency in our data for fast growth. It 
therefore appears that the determination of the growth rate of an individual is 
partly determined by the growth rate of the mother and partly determined by 
some other factor.  



 60 

Conclusions and future outlooks 

 

Technology development for the study of bacterial cells 
As the microscopic world lies beyond our natural senses, insights of it have 
only been afforded at the rate with which technology has advanced. Here, 
the integration of microfluidics and single molecule fluorescence microsco-
py has afforded insights of the regulation of the bacterial cell cycle and how 
genes are regulated in living cells. 

Integrating methods adds complexity and the development of a composite 
process requires a co-development of many factors. Optimization can easily 
lead to a combinatorial explosion of conditions to test and as a result, com-
plex processes are rarely exhaustively optimized. After establishing accuracy 
of the process, the stability or reliability is often prioritized. The reliability of 
a composite process is often only as good as its weakest link or the least 
reliable factor. In order to have a reliable composite process all sub-
processes must be very reliable.  

The integrated method we developed allows for an arbitrary number of 
observations to be acquired from one experiment and is automated from the 
start of acquisition. The rate of acquiring complete cell cycles is currently set 
by the number of positions which can be monitored in parallel. If all posi-
tions in the chip were monitored, data containing ~104 cell cycles would be 
acquired per hour during conditions of fast growth. 
 

Insights afforded by the method 
Early dividing cells are likely over-represented in data from time-lapsed 
experiments. This bias will affect all factors which are dependent on the 
cycle time. To minimize this bias, experiments should be conducted for long 
durations and cell tracking should be as accurate as possible. 

Under our experimental conditions, the timing of gene expression events 
is difficult to determine using fluorophores such as Venus due to a long mat-
uration time. This can be a result of low oxygen levels in the microfluidic 
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chips during our experiments. The performance of Venus under  other exper-
imental conditions are difficult to predict, however it appears that it is crucial 
to be able to test the maturation of fluorophores under the conditions at 
which they are used. 

Information on binding states, such as specifically bound TFs or active 
replisomes, appears to be more reliable, if a scheme of synchronization can 
be achieved which allows for averaging over many observations without 
masking underlying mixed distributions. In this way it was possible to test 
models of gene regulation in living cells. Our tests revealed that regulation 
does not occur at equilibrium. This illustrates that the study of molecules in 
living cells is important to understand their behavior.  

Further, the chromosome was found to be maintained in a size dependent 
manner in E. coli. This is due to a size dependent mechanism for initiation of 
replication, where cells will initiate according to a constant volume per 
number of origins. Initiation is the main regulatory event of the cell cycle 
and variations in establishing its timing determine the distributions of cell 
sizes and cycle times. A consequence of this regulation is an uncertainty 
relation between size at birth and cycle time, in which variance for both enti-
ties is conserved and their relative magnitudes are set by the growth condi-
tions.  

 

Future developments 
One of the major limitations to studying individual cells using fluorescence 
microscopy is the performance of fluorophores. A great variety of fluores-
cent protein variants are available. However, fast maturing variants are rare. 
As we have seen the conditions under which the fluorophores are used may 
influence their properties. Using microfluidics it is possible to measure the 
maturation time in situ. This approach could potentially be used to develop 
new fast maturing fluorophores.  

For applications such as single particle tracking, high photo-stability is 
essential to obtain long trajectories. Conversely, when counting individual 
fluorescent molecules to determine when they were synthesized, fluoro-
phores which are less photo-stable are required. During our experiments 
cells have been more sensitive to laser exposure than expected and great care 
had to be exercised not to injure them. Bleaching the majority of Tsr-Venus 
molecules present in a population with a frequency of 1/3 min-1 under the 
conditions studied in paper II caused cells to grow slower, to filament, and 
rupture. 

Fluorescent proteins are often the same size as the proteins they label and 
many attempts to label proteins impair their native function. Further, fluo-
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rescent proteins have a propensity to form aggregates which can be misinter-
preted as intracellular localization patterns of the native protein [64]. 

 
The tools of molecular biology are currently limited to studying the cases 

which conform to the requirements of those tools. The development of im-
proved fluorophores appears to be the most important undertaking in order to 
widen the range of molecules which can be studied using fluorescence mi-
croscopy. 

Uncertainty in the bacterial cell cycle 
E. coli regulates its cell cycle in a manner which will shift variance between 
the sizes at birth and the cycle times over different growth conditions. There 
appears to be at least one more uncertainty relation in this regulation, be-
tween the growth rate and the cycle time. For the two conditions we have 
studied here it appears that the variance in the product of these two entities, 
the logarithmic expansion is conserved to some degree. In the case of fast 
growth, this is due to an increase in the variance in growth rate.  

The growth rate is often attributed to the concentration of constitutive cell 
parts which can generate more parts, e.g. ribosomes or RNA polymerases. 
The growth rate appears to be consistent over the duration of the cell cycle. 
At division we assume that a sibling pair will retain the constitutive parts 
which were present in the mother. However, growth rate is only moderately 
correlated between mothers and daughters (see under Variance in cell cycle 
regulation). Between siblings the growth rate is instead highly correlated. It 
is difficult to explain these findings solely according to inheritance of parts. 

If an additional factor contributes to the determination of growth rate in a 
manner which increases variance in growth rate under conditions of fast 
growth, it could mean that the population is not growing at a maximum rate. 
If one bacterium in such a population should mutate to eliminate this factor 
and consequently grow faster than its neighbors, it is expected that this cell 
and its descendants would outcompete its neighbors and ultimately establish 
this mode of determining growth rate as the norm for future generations. For 
this not to occur, an evolutionary penalty for taking this path is expected. 

The logarithmic expansion represents a concise description of the regula-
tion of the bacterial cell cycle. We can therefore provide an answer to the 
question raised in the introduction. How precise is cyclic life? Well, it’s 20% 
as measured by the coefficient of variation. The fascinating aspect of this 
finding is not the value itself, but that it is relatively conserved between 
growth conditions. The mechanisms involved are not known, but are related 
to the establishment of growth rate. Conservation in variance between size at 
birth and cycle time is a consequence of regulating the cell cycle to maintain 
constant cell sizes over-time by initiating replication according to size. 
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Whether variance in growth rate is a resulting consequence of regulation or a 
factor contributing to it remains to be discovered. 
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Appendix: Measurement and determination of 
the maturation time of Venus in live bacterial 
cells growing in a microfluidic chip 

 

Introduction 
The reported maturation time of the yellow fluorescent protein variant, Ve-
nus, is 7 minutes [41, 58] and for that reason it is regarded as a fast maturing 
reporter suitable for studies of gene expression in living cells [41]. To meas-
ure the maturation time under the conditions present during a microfluidic 
time-lapsed fluorescence microscopy experiment, cells modified to express a 
reporter construct, LacY-Venus, from the native lacY gene [54] were sub-
jected to chemical induction pulses of high IPTG concentrations for various 
durations. The microfluidic chip allows for continuous exponential growth 
and rapid induction of the lac promoter (~2 s) [65]. The response was meas-
ured as the fluorescence density in micro-colonies during and after induc-
tion. We found that under the conditions of fast growth in a microfluidic 
device, the average maturation time for Venus was 54 minutes, which consti-
tutes roughly twice the duration of the cell cycle.  

Materials and methods  
Preparations of the microfluidic device and microscopy were performed 
according to [65]. E. coli cells of strain SX700 [54] were cultivated in a mi-
crofluidic chip in M9 minimal medium, supplemented with 0.4% glucose 
and 1xRPMI 1640 amino acid (sigma-aldrich) and a surfactant Pluronic 
F108, 0.85 gL-1. The temperature of the chip was maintained at 37ºC for the 
duration of the experiment. Both media reservoirs contained this as a base. 
One reservoir also contained 1 mM IPTG and trace amounts of inert polysty-
rene beads (2 µm diameter) for visualization of flows in the microfluidic 
device. Acquisition of images was synchronized with induction pulses exe-
cuted by linear actuators according to scheduling in the acquisition software 
RITAcquire2 [65]. The duration of induction pulses in the experiment were 
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0.125,0.10 (SD, SEM)  counts·µm-2. The fluorescence response to induction 
was noisy but showed a dramatic increase for longer induction durations. 
The response increased to a maximum value, then decreased over time. This 
trend could be seen for inductions as brief as 20 seconds although the rela-
tive fluctuations between time points were large. The response to induction 
was modelled assuming that a fluorescence mass, xtot, was synthesized dur-
ing the induction pulse. The immature fluorescence mass, x0, was assumed to 
be non-fluorescent. The maturation time was regarded as an exponentially 
distributed random variable with average maturation time, τmat. The matura-
tion rate, kmat, was therefore

 
 
As molecules mature, the mature fluorescence mass, xmat, was formed. As 
the cells were growing exponentially [65, 66], both the immature and mature 
fraction of all molecules were diluted by growth at rate, µ. This could be 
modelled as a system of linear ordinary differential equations as 

 

 
Which could be solved analytically so that  
 

 
 
Further we assumed that the total fluorescence mass was proportional to the 
induction duration, Δti, as 
 

 
 
where ksynth was the fluorescence synthesis rate for the lactose promoter 
while fully induced. The background, xback, was assumed to be invariant over 
time and space and was added to the expression for the fluorescence re-
sponse to induction as 
 

 
 
 
 The average growth rate µ was obtained by segmentation and tracking ac-
cording to [65, 66] as 0.024 min-1 and the fluorescence background could be 
measured for un-induced cells. Two unknown parameters, ksynth and kmat 
remained. However, we found that this expression was inadequately com-
plex to capture the observed induction response.  

We observe that there was an initial period during which the fluorescence 
response was lagging before a more dramatic increase in the response en-
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sponse are not time-dependent. We find that the description of the matura-
tion process as a first order reaction captures the observations well only if a 
time-delay between the start of induction and start of maturation is present.  
Under this model the corresponding maturation time of Venus is 54 minutes, 
which is roughly twice the generation time of the cells. The fluorescence 
response appears to have a substantial lag which appears to be invariant to 
the duration of induction, suggesting that even for brief inductions a re-
sponse is generated  ~10 minutes later.  

From previous tests of the induction capacities of the microfluidic chip 
we have concluded that the LacI-Venus binding to its native operator site is 
induced to dissociate within 2 seconds from executing the command to ex-
change the medium [65]. Therefore we exclude the possibility that the lag is 
due to a delayed switch of medium in the chip. The process of protein syn-
thesis contains several phases which could contribute to a lag before any 
LacY-Venus molecules are produced. The lacY gene is preceded in the lac 
operon by the lacZ gene.  However, the lacZ gene is reported to synthesize 
functional -galactosidase molecules within 75 s after saturating induction 
by IPTG [67] and the additional synthesis time of LacY-Venus is not ex-
pected from the length of the gene and the translation rate to account for the 
residual duration of the lag.  

An alternative explanation for the kinetics of the response could be that 
the reporter mRNA is stable for long periods. The expected life-time of the 
mRNA would then have to rival the cell cycle, which is considerably longer 
than that of the average mRNA, 3-8 min [68], and that reported for lacZYA, 
3 min [41]. For this reason we suggest that induction response is more likely 
a consequence of fluorophore maturation. The implication of the maturation 
time of Venus under the conditions studied here is that its use as a molecular 
reporter is likely to obscure information of the time when corresponding 
molecules were synthesized. The effect is expected to be greater for fast 
growing cells although it is not known if the maturation process is different 
under different growth conditions. The translatability of these results to other 
fluorescent reporters and other conditions under which they can be used is 
not known. However, they illustrate the importance of in situ characteriza-
tion of the maturation properties of protein fluorophores to understand the 
results they generate. 



 69 

Swedish Summary 

Bakterieceller fortplantar sig genom att växa och dela sig. För att 
åstadkomma detta måste den genomsnittliga cellen dubblera sin massa under 
cellcykeln. Bland annat behöver bakteriens arvsmassa, eller kromosom, 
dubblas. Detta sker genom DNA- replikation. Tarmbakterien Escherichia 
coli kan under snabb tillväxt ha en kortare cykeltid än tiden det tar att 
replikera kromosomen. Detta görs genom att flera rundor av replikation 
bibehålls samtidigt. Som en konsekvens ärver celler då replikationsprocesser 
som startades, eller initierades, under tidigare cellcykler. Kromosomen 
innehåller gener som kan uttryckas för att tillgodose cellens behov av 
enzymer, strukturella delar och reglermolekyler. 

För att studera cellcykelns inverkan på gen-reglering i levande 
bakterieceller utvecklades en metod som kombinerade mikrofluidik, 
fluorescensmikroskopi och automatiserad bildanalys. Mikrofluidiken 
möjliggör att behålla celler i ett tillstånd av konstant tillväxt samtidigt som 
deras rörelser begränsas tillräckligt för att upprepade gånger avbilda dessa i 
ett mikroskop. Känsligheten i modern fluorescensmikroskopi är tillräckligt 
god för att möjliggöra detektion och lokalisering av enskilda fluorescenta 
proteinmolekyler inuti levande bakterieceller.  

Geners uttryck regleras ofta av transkriptionsfaktorer. 
Transkriptionsfaktorer är proteiner som binder till DNA. Ofta binder dessa 
särskilt hårt till en eller några specifika DNA-sekvenser, s.k. 
operatorsekvenser. Gener är ofta grupperade på kromosomen för att 
samuttryckas, i s.k. operon. Laktosoperonet i E. coli ger bakterien 
möjligheten att metabolisera sockret laktos, och operonets uttryck regleras 
av transkriptionsfaktorn LacI. Då LacI binder till sin operatorsekvens, 
undertrycks uttrycket av operonet. När LacI släpper denna möjliggörs 
uttryck. Genom att genetiskt modifiera bakterieceller för att uttrycka 
transkriptionsfaktorer som är sammansvetsade med fluorescenta proteiner, 
kan enskilda bundna transkriptionsfaktorer detekteras. 

Mikrofluidiken möjliggör ett mycket snabbt byte av den kemiska miljön 
som bakterierna lever i. Detta kunde utnyttjas så att söktiden, då en molekyl 
söker sin operatorsekvens, och bindingstiden hos en fluorescent variant av 
LacI kunde mätas i levande celler. Resultaten kunde inte förlikas med en 
modell för genreglering som förutsätter att de molekylära reaktionerna är i 
jämvikt. Cellens tillstånd är dynamiskt och i detta fall var det nödvändigt att 
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studera molekylerna i levande celler för att dra slutsatser om deras beteende 
och effekterna på genens uttryck. 

Fluorescenta proteiner har en mognadstid, under vilken molekylerna inte 
kan detekteras. Det snabba bytet av den kemiska miljön i mikrofluidiken 
möjliggjorde att denna mognadstid kunde mätas för ett fluorescent protein, 
Venus. Resultatet visade att Venus mognade avsevärt långsammare än 
förväntat, under ungefär dubbelt så lång tid som en genomsnittlig cellcykel. 
Mognadsprocessen är dessutom stokastisk och noggrannheten med vilken en 
fluorescent molekyls tillverkningstid kan bestämmas påverkas drastiskt av 
långa mognadstider. 

Studier av bindingstillstånd, så som bundna LacI molekyler, påverkas 
mindre av lång mognadsitd. Studier av bindingen av LacI-Venus till 
operatorsekvensen under cellcykeln visade att kromosomens delar enklast 
lokaliseras genom att jämföra observationer av celler som har samma 
storlek. Vidare studier av E. colis replikationsmaskineri avslöjade att 
initieringen av replikationen sker i enlighet med cellers storlek, snarare än 
tiden från delning. Replikation startar vid origin-regionen på kromosomen. 
Studier av denna visade att replikation initieras vid en viss cellvolym per 
origin, oberoende av levnadsbetingelserna.  

För att avsluta en cellcykel behöver den genomsnittliga cellen initiera och 
terminera en runda av replikation, segregera sin arvsmassa och dela sig. En 
enkel modell av regleringen av detta skeende, där tidpunkten för cellens 
delning bestäms som en tidsförskjutning från det att cellen initierade 
replikationen, visade sig återskapade de observerade värdena av storlek vid 
födsel och cykeltid. En konsekvens av regleringen är att dessa observabler 
ingår i en osäkerhetsrelation, där variationen i födslolängd är stor under 
snabb tillväxt jämfört med långsam tillväxt, och variationen i cykeltiderna är 
stor under långsam tillväxt jämfört med snabb tillväxt. 
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Introduction
Gene regulation depends on a broad spectrum of intra-

cellular signals encoded and processed at a variety of

spatial and temporal scales. In order to unveil the regu-

latory principles of a specific system, the experimental

assay needs to resolve the regulatory cues of the process

under investigation. Obviously, to investigate stochastic

differences in gene expression between cells, means of

studying cells individually have to be adopted, and to

understand dynamics of gene regulation, the process

needs to be monitored at sufficient time resolution.

Biomolecules may also change conformation, location,

states of binding and modification, etc. and resolving

these states may be necessary to determine their role

for regulation. In this review, we present a few examples

of regulatory interactions revealed only at fine experimen-

tal resolution. Further, we present the use of microfluidics

as a means of meeting the greater demands of conducting

high-resolution studies.

Single-cell resolution and gene expression
Isogenic cells living under seemingly identical conditions

may display considerable heterogeneity in gene expression

(Figure 1a). Population-averaged studies mask the cell-to-

cell difference and assays with single-cell resolution are

necessary to explore for example the reasons and con-

sequences of heterogeneity. There are several different

factors that can contribute to the variations between iso-

genic cells. Firstly, the chemical reactions involved in gene

expression are inherently stochastic and will generate

diversity [1–3]. Secondly, cells can be in different phases

of the cell cycle or some other oscillating regulatory cycle

[4]. Even if cells are initially synchronous, stochastic

fluctuations will cause them to drift out of synchrony

[5,6�]. Thirdly, there are several epigenetic phenomena

that will keep lineages with different histories different for

generations even when growing under identical conditions

[7�,8].Finally, unicellular organismsmay alsodiffer accord-

ing to their age, asmeasured in the number of cell divisions

they have experienced [9,10].

Gene expression can be studied in single cells using a

variety of methods. For example by using flow cytometry

the expression levels of fluorescent reporter proteins can

be measured in many thousands of individual cells in a

short time. Real-time PCR can also be used to quantify

endogenous RNA molecules in single cells [11]. If the

expression levels approach single copies per cell, methods

with higher sensitivity are needed. For example, digital

PCR makes absolute quantification of native mRNAs

possible [12] and simultaneous quantification and local-

ization of single intracellular mRNAs can be achieved by

Fluorescence in Situ Hybridization, FISH [13]. Further-

more, expression levels of fluorescent reporter proteins

can be quantified down to the level of single molecules in

individual living bacterial cells by using sensitive micro-

scopy [14]. This technique was recently used to quantify

the genome-wide expression patterns of Escherichia coli at
single-molecule sensitivity [15�].

Temporal resolution and dynamics
Static information on cell-to-cell variability can be used to

infer dynamic properties of transcription based on the

stationary distribution of a stochastic model [16,17]. How-

ever, important parameters are masked in time averaging

and can only be obtained by monitoring cells over time

[18,19]. Here, time-lapse fluorescencemicroscopy of fluor-

escent protein reporter constructs has proven an excep-

tionally powerful tool [20,21].This approach has beenused

to study dynamic aspects of many regulatory circuits in

single cells which may otherwise have been overlooked.

For example, Dunlop et al. [22�] recently reported on how

timedelayed correlations in gene expression canbeused to
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infer active regulatory links and separate intrinsic from

extrinsic noise. Another stunning example of time-de-

pendent gene regulation is found in a study by Cagatay

et al., where they showed how design of competence

circuits inBacillus subtilis is under selection for fluctuations
in the competence time [23�].

However, the temporal resolution of assays based on

expression of fluorescent proteins is limited, mainly by

the reporters themselves. The instantaneous expression

level of a gene is smeared over a period corresponding to

the maturation time of the fluorochrome, which can

amount to several hours [24]. One way to improve the

time resolution is to use fast-maturing fluorescent

proteins, such as Venus, a yellow fluorescent protein

variant [25] with a maturation time of around 7 min

[18]. Another means of increasing the time resolution

is to destabilize the reporter. By including a specific

protease degradation tag, such as ssrA, the fraction of

early matured proteins can be increased [26]. This is at

the expense of the signal strength and also introduces

noise from the proteolytic pathway into the signal.

82 Analytical biotechnology

Figure 1

High-resolution fluorescence microscopy of gene expression. (a) Heterogeneous and lineage dependent gene expression from isogenic E. coli cells.

Top: expression of fluorescent proteins from the lac operon in response to shift in carbon source (MW and JE, in preparation). Bottom: phase contrast

image of the same cells. (b) Rapid induction of the lac operon as studied by dissociation of individual LacI-Venus repressors from the chromosomal

binding site. The time-scale of induction would be masked in an assay based on detecting expressed reporter proteins. Left: cells without IPTG. Right:

cells after addition of 100 mM IPTG. (Petter Hammar, in preparation). (c) MinCD oscillations in E. coli. Top: the spatial oscillations of MinC regulates the

position of cell division in E. coli [47]. Bottom: stochastic reaction-diffusion simulation in 3D based on the multivariate master equation [48,49]. (d)

Single-molecule superresolution tracking of rapidly diffusing proteins in a bacterial cell (English et al. submitted).
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Alternatively, it is possible to monitor pre-matured fluor-

escent protein reporters as they bind to nascent RNA

molecules. This can be achieved by utilizing the affinity

that fluorescently labeled MS2 phage coat protein exhi-

bits to a 19 nt RNA hairpin structure which can be

included repeatedly in the mRNA studied [19,27]. The

time resolution is in this case limited by the association

rate of the fluorescent fusion proteins. Higher expression

levels of the fluorescent fusion protein will obviously

decrease the time for binding, but also increase the

fluorescent background such that more molecules will

have to bind to detect the signal. The total expression

level of the reporter has to be tuned so as to allow fast

detection of nascent RNA molecules.

Several transcription factors exist at sufficiently low

cellular copy number to enable detection over the back-

ground of a single fluorescently tagged protein molecule

bound to its chromosomal binding site. This was used by

Elf et al. [28�] to determine the time it takes for a LacI

transcription factor to find and repress its chromosomal

operator in E. coli and its rate of dissociation after

induction. In this case, the time resolution is only

limited by the time it takes to distinguish specifically

bound from freely diffusing proteins (<100 ms), which

is much faster than the conventional indirect assays of

gene regulation based on the expression of reporter

proteins (Figure 1b).

Spatial resolution and gene regulation
Important information encoded in the intracellular

location of transcriptional regulators may also be lost

when studying cells at insufficient spatial resolution.

For example, in a recent study Cai et al. [29�] demon-

strated that the transcription factor Crz1 regulates expres-

sion of its target genes in response to the extracellular

calcium concentration by oscillating between the soma

and nucleus in Saccharomyces cerevisiae cells in a frequency

modulated manner. The frequency modulation ensures

that different regulated promoters can respond in pro-

portion to the stimulus despite different binding

strengths for the transcription factor. Striking examples

of coordinated spatial and temporal oscillations of gene

regulatory proteins can also be found in prokaryotic cells,

such as in the cell cycle-dependent activities of master

regulators [30] and mitotic apparatus [31] in Caulobacter
crescentus; the regulated relocation of bacterial transcrip-

tion factors between their chromosomal operators and the

inner membrane [32]; as well as the irregular relocations

from pole to pole or nucleoid to nucleoid of the Soj

protein involved in sporulation and transcriptional regu-

lation in B. subtilis [33].

All of these studies have relied on fluorescencemicroscopy

to provide the spatial information. Conventional light

microscopy is however diffraction-limited, in the sense

that it is not possible to know from where in the sample

plane a photon originated with a better resolution than

�200 nm. The dynamics of cellular structures at finer

resolutions have therefore remained hidden. However,

several methods that allow far-field fluorescence micro-

scopy at higher resolution have recently been devised [34].

For example Shroff et al. [35] used Photoactivated Local-

ization Microscopy, PALM, to study dynamics within

individual adhesion complexes in living mamalian cells

at 60 nm spatial resolution and Huang et al. [36] used

multicolor three-dimensional stochastic optical reconstruc-

tion microscopy, 3D-STORM, to visualize the topology of

the mitochondrial network in fixed mammalian kidney

cells at a 30 nm resolution. These methods will greatly

improve our ability to study cellular structures and nano-

scopic dynamics also in prokaryote cells. For example

Biteen et al. [37] used superresolution time-lapse imaging

to characterize the filamentous superstructure of the bac-

terial actin protein MreB in live C. crescentus cells at a

resolution of 40 nm and Greenfield et al. [38] used PALM

to characterize the organization and assembly of E. coli
chemotaxis Tar receptors in fixed cells at a spatial resol-

ution of 15 nm.

Microfluidics in single-cell microscopy
Three pressing needs arise when performing single-cell

gene expression studies: firstly observations of many cells

and molecules have to be accumulated in order to draw

significant conclusions, secondly the cells have to be in a

representative physiological state and thirdly the chemi-

cal environment must be well-defined and preferably

rapidly interchangeable. Recent advances in micro-fab-

rication have realized microfluidic devices capable of

alleviating these needs for single-cell fluorescence micro-

scopy [39,40] (Figure 2).

In order to keep microbial cells in constant good health

during experiments, several micro-chemostats have been

designed. For example Danino et al. [41�] devised chips

trapping a monolayer of bacterial cells in the focal plane.

A constant occupancy of each trap was maintained as cells

were released as they grew out of the trap.

The microscopic length scale characteristic of these

devices shifts the properties of the fluids into a regime

in which little or no turbulent mixing occurs. This allows

for predictable and automatable on-chip composition of

the cells chemical environment as well as its rapid

exchange, increasing both the time and inductive resol-

ution at which gene expression can be studied [6�]. Most

importantly, trapping regions are easily multiplexed on a

chip, allowing a massive parallelization of a single exper-

iment [15]. Combined with the indefinitely prolonged

times that cells can bemaintained and imaged [50] results

in data sets, the magnitude of which can dramatically

increase confidence in the conclusions drawn, even for

rare events [42] and better merits the comparison with

bulk experiments.
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Resolving Individual molecular states
So far we have described phenomena that may be masked

in experiments lacking resolution of single cells, in time

or space. However, since macromolecules with the same

primary sequences, that is isoform molecules, can be in

different states of activity, conformation or binding,

studying only the total molecule concentration at some

intracellular location may obscure important biological

information. Furthermore, the average properties of a

molecular ensemble can only reveal kinetics of intercon-

version between such states if it is first perturbed out of

steady state. The situation is different if the state tran-

sitions of single molecules can be traced directly. In this

case the chemical rates can be determined also at steady

state without the need to synchronize the ensemble of

molecules, which is often not possible in vivo.

In vitro, very powerful single-molecule assays based on for

example Förster Resonance Energy Transfer, FRET [43]

or fluorogenic product reactions have been reported [44].

Unfortunately, many such schemes remain difficult to

realize in vivo, mainly because of high background auto-

fluorescence, and in the case of FRET photo-instability of

genetically encoded fluorescent reporters. One way to

differentiate bound from freemolecules in live cells would

be to study their individual diffusion trajectories, as

obtained by single-molecule tracking of fluorescent fusion

proteins [51]. Inside living cells it has however proven a

challenge to collect a sufficient number of photons from

individual rapidly moving fluorescent proteins to pinpoint

their positions. This has previously limited the range of

possible targets to slowly diffusing molecules, such as

membrane-associated proteins. For example, Niu and

Yu [45] studied FtsZ labeled with the photo-convertible

red fluorescent protein Dendra2b, and characterized the

differences between two FtsZ subpopulations in E. coli.

By combining superresolution localization of individual

fluorescently labeled proteins with stroboscopic laser

excitation it is also possible to capture the movement

of individual transcription factor molecules searching for

their specific binding sites [28�]. Recently this method
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Figure 2

E. coli cells in a microfluidic device. Right: parallel trapping regions each containing 200–300 cells imaged with phase contrast. Top left: a single trap

imaged with phase contrast allowing segmentation and tracking of individual cells. Bottom left: fluorescence image of membrane-bound Venus

molecules resulting from leakage expression from the lac operon (MW and JE, in preparation).
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was improved such that it is possible to track individual

rapidly moving fluorescent proteins in E. coli (Figure 1d)

(English et al., in preparation). This capability suggests

that it is also possible to track fluorescent fusion proteins

diffusing through the cytoplasm in free or bound states.

By monitoring the transitions between such states of

different diffusivities it will be possible to acquire bind-

ing and dissociation rates for proteins in living cells.

Conclusions
Currently, gene expression and gene regulation can be

studied in individual cells, and population-averaged

models are now being understood from the perspective

of individual contributions from heterogeneous ensembles

of isogenic cells. Increased spatiotemporal resolution has

enabled the correlation of expression to the diverse and

dynamic states of individual regulator molecules. Further-

more, the chemical control and parallelization possible in

microfluidic devices afford the exhaustive exploration of

inductive responses as well as confidence in the results.

One of the challenges for the immediate future is to adapt

these high-precision methods to the study of eukaryotic

cells. Here the large volume and high auto fluorescent

background make detection, accurate counting and fast

tracking of single fluorescent proteins difficult, but prob-

ably not impossible. Also, more powerful schemes to

interrogate the state of activity of individual molecules

in living cells are needed. To date, single-molecule track-

ing can be used to measure binding kinetics and FRET to

determine conformational changes in vitro, but the in vivo
implementations of bothmethods remain limited.Brighter

and more photo-stabile fluorophores, as well as improved

non-perturbative and specific labeling schemes may be a

prerequisite and the search for both continues [52].

Another important challenge is to find ways to measure

the dynamics of individual metabolites in single cells as

they often act as primary signals for gene regulatory

systems. Beyond this, metabolite concentrations are often

the entity which the cell aims to regulate and a direct

readout of the investment in metabolite pools may there-

fore be more revealing than that of the enzymes produ-

cing them [53]. Although some fast and bright FRET

probes have been developed to this end [54], a wider

range of probes and targets is needed.

Finally, the large amount of hi-resolution data available

from single-cell experiments may be manageable only by

automated analysis tools and intelligible only within the

framework of correspondingly detailed quantitative

models.Newchallenges therefore arise in how to automate

the analysis of complex data as well as in how tomodel and

simulate intracellular processes at the right level of detail to

capture their central properties [55]. We should however

remember that the keydetailsmaybehidden at spatial and

temporal scales that wedonot yet have the tools to explore,

in which case quantitative modeling should point the

direction to what remains to be discovered.
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High-throughput gene expression analysis
at the level of single proteins using a
microfluidic turbidostat and automated
cell tracking

G. Ullman1,2,†, M. Wallden1,†, E. G. Marklund1, A. Mahmutovic1,
Ivan Razinkov3 and J. Elf1

1Department of Cell and Molecular Biology, Science for Life Laboratory, and 2Division of Scientific Computing,
Department of Information Technology, Uppsala University, 75105 Uppsala, Sweden
3Department of Bioengineering, University of California, La Jolla, San Diego, , CA 92093, USA

We have developed a method combining microfluidics, time-lapsed

single-molecule microscopy and automated image analysis allowing for

the observation of an excess of 3000 complete cell cycles of exponentially

growing Escherichia coli cells per experiment. The method makes it possible

to analyse the rate of gene expression at the level of single proteins over

the bacterial cell cycle. We also demonstrate that it is possible to count the

number of non-specifically DNA binding LacI–Venus molecules using

short excitation light pulses. The transcription factors are localized on the

nucleoids in the cell and appear to be uniformly distributed on chromosomal

DNA. An increase in the expression of LacI is observed at the beginning of

the cell cycle, possibly because some gene copies are de-repressed as a result

of partitioning inequalities at cell division. Finally, a size–growth rate

uncertainty relation is observed where cells living in rich media vary more

in the length at birth than in generation time, and the opposite is true for

cells living in poorer media.

1. Introduction
Using time-lapsed phase-contrast and fluorescence microscopy, it is possible to

monitor live bacterial cells and simultaneously quantify the expression of their

highly expressed genes as the activity of introduced fluorescence reporters [1].

However, for many of its native protein species, a bacterial cell expresses only a

few copies per generation [2]. In order to study processes involving these pro-

teins, fluorescence microscopy methods sufficiently sensitive to resolve

individual molecules have been developed. For instance, Yu et al. [3] reported
on the use of a fast maturing yellow fluorescent protein (YFP) variant, Venus

[4], fused to a membrane tag, Tsr, to profile the absolute expression of the

lacZ gene, in live Escherichia coli cells, in its repressed state. The Tsr domain

immobilizes the fluorophore at the membrane so that it appears stationary

for periods of 50–100 ms and can be detected as a diffraction-limited spot.

However, tethering to the membrane will disable molecules that rely on intra-

cellular mobility for their function. For this reason, methods for counting

expression events for cytoplasmic proteins are limited. A possible solution is

suggested by the single-molecule tracking experiments where stroboscopic

illumination pulses were used to image the transcription factor LacI–Venus

non-specifically bound to DNA in live E. coli cells [5]. This suggests that

short excitation pulses could be used also to profile the synthesis of cytoplasmic

low copy number transcription factors or other proteins binding to relatively

immobile intracellular targets.

Single-protein counting experiments in vivo reveal that isogenic cells under

seemingly identical experimental conditions display considerable diversity in

expression [6]. In order to confidently draw conclusions on the nature of this

& 2012 The Author(s) Published by the Royal Society. All rights reserved.
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diversity, it is necessary to sample a sufficient number of

cells. Several microfluidic devices have been reported to sub-

stantially increase experimental throughput by harnessing

the reproduction of bacterial cells to continuously regenerate

the sample and also allowing imaging of many replicate

colonies in parallel [7,8]. However, the sheer size of image

datasets that can be generated in this fashion overwhelms

manual analysis efforts and consequently several initia-

tives of automation have been undertaken [9,10]. In this

study, we report on a method combining microfluidics,

single-molecule fluorescence microscopy and automated

image analysis, enabling the study of the expression and

super-resolution localization of low copy number transcrip-

tion factors throughout thousands of bacterial lifespans per

experiment. To illustrate the performance of the method,

we quantify the dynamics of synthesis and intracellular local-

ization of the lactose repressor by monitoring LacI–Venus

expressed from its native promoter in live E. coli cells.

We compare these observations with those obtained under

identical conditions for cells expressing the reporter construct

Tsr–Venus from the lactose permease gene, lacY, of the

lactose operon.

2. Material and methods
(a) Design, fabrication and use of the

microfluidic device
The chip design was inspired by Mather et al. [11]. The features of
the microfluidic chip used in this study were designed in three

layers using AUTOCAD. The layers correspond to structures of

different step heights of the mould and ultimately to the different

depths of the structures of the finished microfluidic device

(described under ‘mould fabrication’ and ‘chip fabrication’).

The device contains four structural motifs: ports, channels, a

chamber and traps (figure 1a). The chamber houses three

evenly spaced rows, each containing 17 traps (figure 1a). Each
trap is 40 � 40 � 0.9 mm (figure 1b), and is bounded by two

opposite walls and two open sides connecting the trap to the

10 mm deep surrounding. This geometry restricts the cells to

form a monolayer colony in the focal plane while imaging.

Cells close to the openings are released as the colony expands

(figure 1b). The microfluidic device is connected to media reser-

voirs and imaged using an inverted microscope (figure 1c).
The master mould was fabricated using standard UV-soft

lithography techniques. Three masks for microfabrication were

printed in chrome. Custom formulations of SU8 Photoresist

(MicroChem) were deposited on clean polished silicon wafers

(University Wafer) using a spin coater. The wafers were then

aligned to the mask and exposed using a mask aligner (Süss

MA6). This process was repeated to deposit layers of step heights

0.9, 2.7 and 10 mm per wafer. The first layer corresponds to the

trap depth of the microfluidic device; the intermediate layer

enables the alignment of the first and third layer, corresponding

to the channels and ports. Each layer of the moulds was

measured using a stylus profilometer and inspected under a

microscope before applying the next.

A master cast of the mould was made from polydimethyl-

siloxane (Sylgaard 184, Dow Corning), using the master mould.

Bubbles were removed by vacuum desiccation. The cast was

cured at 808C for 30 min. One master cast contained 12 identical

chip structures, which could be excised and used individually.

When fabricating each device, port holes (0.5 mm diameter)

were punched out of the device cast. Debris was removed from

the cast by vortexing in ethanol. The chip cast was bonded to a

coverslip (40 mm diameter, 200 mm thick, Thermo-Scientific)

after oxygen/UV plasma treatment (UVO-cleaner 42–220,

Jellight Co.) for 5 min at 0.5 bar oxygen pressure. The bond was

stabilized by incubating at 808C for 10 min. Just prior to loading

and running the device, the ports were treated with a high-

frequency generator (model BA 20 D, Electro-Technic Products

Inc.), and the device was flooded with de-ionized water.

Gravity flow was used to control the direction and the mag-

nitude of the flow inside the microfluidic device. The pressure

gradients between the different ports of the device were estab-

lished by differences in elevation relative to the sample of the
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Figure 1. The experimental set-up and data processing. (a) The microfluidic device has three ports designated for medium, running waste and loading waste. The
chamber houses three rows, each containing 17 traps. The direction of the flow through the chamber is alternated between the loading and running phase of the
experiment. The cells are introduced from the running waste and are caught in the traps. (b) Each trap is a 40 � 40 � 0.9 mm compartment which is bounded by
two rigid walls and two openings. Cells that reach the openings are released from the traps into the 10 mm deep surrounding. (c) The device is connected to
reservoirs at the ports and imaged using an inverted microscope. The various parts of the microfluidic chip are not drawn in scale. (d ) Data processing: cells are
detected and segmented from the phase-contrast image (top). Molecules are detected within the fluorescence images (bottom). The coordinates from the detected
molecules and cells are used to map molecules to cells (middle).
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connected reservoirs. During loading, the seeding culture was

introduced into the device through the running waste port. The

cells were caught in the traps by introducing pressure waves

into the tubing. Once all traps were sufficiently occupied (10–

100 cells per trap), the direction of the flow in the chamber was

reversed, exchanging the seeding culture with fresh medium

(figure 1a). The cells were allowed to acclimatize and grow

until the traps were fully occupied (approx. 4 h) before imaging.

The temperature of the sample was maintained at 378C using a

custom-fitted incubator hood (OKO LAB).

(b) Strains and medium
Two bacterial strains, SX701 and JE116, based on E. coli strain
BW25993 [12], were used in this study. In strain SX701, the lac-

tose permease gene, lacY, was replaced with the tsr–venus
construct [13]. Strain JE116 is based on strain JE12 [5], in which

the lacI gene was modified to encode a C-terminal fusion of

LacI and Venus. The auxiliary lactose operator site, O3, was

replaced with the main operator sequence, O1, to increase

auto-repression by LacI threefold. Further, in strain JE116 the

downstream sequence including the native O1, O2 binding

sites as well as parts of the lacZ gene was removed, leaving

only one specific binding site sequence for LacI–Venus

molecules per chromosome copy [14].

Cells were grown in M9 minimal medium, with 0.4 per cent

glucose, either with or without supplemented amino acids

(RPMI1640 (R7131), Sigma–Aldrich). An overnight culture was

diluted 200 times in 40 ml fresh medium and incubated for

3–5 h (6–8 h for cells grown without amino acids) at 378C and

shaking at 225 rpm. During this incubation, the microfluidic

device was prepared. Cells were harvested into a seeding culture

by centrifugation at 5000 � rcf for 2.5 min and the pellet resus-

pended in 50–100 ml fresh medium. In order to prevent the

cells from sticking to the surfaces of the microfluidic device a sur-

factant, Pluronic F108 (prod. Number 542342, Sigma–Aldrich)

was added to all media to a final concentration of 0.85 g l21.

(c) Microscopy and imaging
Imaging was performed using an inverted microscope (Ti

Eclipse, Nikon) fitted with a high numerical aperture oil objec-

tive (APO TIRF 100�/N.A 1.49, Nikon) and external phase

contrast to minimize loss of fluorescence signal. The phase-con-

trast channel and the fluorescence channels were imaged using

separate cameras, a model CFW-1312M (Scion Corporation)

and an Ixon EM plus (Andor Technologies), respectively. Focus

was maintained by the perfect-focusing-system of the microscope.

The light source for fluorescence excitation was an Argon ion

laser (Innova 300, Coherent Inc.) dialled to 514 nm for excitation

of YFP-reporters in the sample. For fluorescence imaging, a

slower shutter (LS6Z2, Uniblitz) was used for strain SX701

(Tsr–Venus) and a fast shutter (LS2Z2, Uniblitz) was used for

strain JE116 (LacI–Venus). The fast shutter was controlled

using a signal generator (AFG3021B, Tektronix), which was trig-

gered by the Ixon camera, exposing the sample for 1 ms. A 2�
magnification lens was used in the fluorescence emission path

to distribute the point spread function ideally on the 16 mm

pixels of the EMCCD. Image acquisition was performed using

RITACQUIRE, an in house GUI-based plugin for MICRO-MANAGER

(v. 1.3.4.7, www.micro-manager.org). In each experiment, three

positions (traps) were subjected to the following acquisition

program in parallel: every 30 s (every frame), a phase-contrast

image (125 ms exposure) was taken for all positions. Every

3 min (1/6 frames) for all positions, in addition to the phase-

contrast image, two fluorescence images (50 ms exposure for

SX701 and 1 ms exposure for JE116) were taken in rapid succes-

sion, followed by a bright field image (100 ms exposure) of

the fluorescence channel, i.e. using the white-light lamp of the

microscope as illumination source. This programming cycle was

repeated for 1001 frames (8.3 h). Fluorescence images were

acquired in tandem to account for the effects of bleaching on mol-

ecular counting (see §2f ). The bright field imageswere acquired to

allow alignment of phase-contrast and fluorescence images for

each frame. Our automatic method for cropping the phase

images and aligning them to the fluorescent images is described

in the electronic supplementary material, methods.

(d) Cell segmentation and tracking
For segmenting and tracking individual cells in the microfluidic

device, we have modified and further developed existing

MATLAB software, MICROBETRACKER [10]. MICROBETRACKER uses the

position of cells in the previous frame as an initial guess and

applies an active contour model [15] to fit each cell with a sub-

pixel resolution boundary. In order to accurately track mobile

cells over several generations, three additional supervised algo-

rithms [16] were implemented in MATLAB to complement

MICROBETRACKER (see the electronic supplementary material,

Methods): a cell pole tracker and two separate error detectors. The
cell pole tracker is used to help the active contour model find

the cell poles correctly for moving cells; otherwise this will

lead to error propagation in the subsequent frames. The first

error detector identifies errors made by the cell pole tracker.

This is usually the result of an occasional large displacement of

the cell between frames. This activates the cell tracker, which

attempts to correct the segmentation of the erroneous cell. The

accuracy of the cell tracker is in turn monitored by a second

error detector. Any cell histories triggering this detector are ter-

minated. In addition, a novel division function was added to

MICROBETRACKER in order to more accurately detect cell divisions

for densely growing E. coli. Each supervised algorithm was con-

structed by first identifying features that efficiently discriminate

between two classes, for instance, true or false cell division. In

the second step, training data were extracted manually from

the image sets for creating training examples for the algorithm

in order to achieve accurate classification. A linear classifier

[16] was used in all supervised algorithms. The algorithms, cell

tracker and the classification method are described in detail in

the supplementary methods. To increase the computational

speed, parts of MICROBETRACKER were rewritten to allow parallel

computing, using MATLAB’s parallel computing toolbox.

(e) Single molecule detection, localization
Fluorescent particles in the sample were detected as diffraction

limited spots in the fluorescence micrographs according to the

method described in Ronneberger et al. [17], in which the normal-

ized cross-correlation between the fluorescence image and an

idealized optical point spread function (a symmetric bi-variate

Gaussian function) is calculated. The standard deviation (s.d.)

for this function is obtained experimentally by imaging and the

signatures of immobilized highly fluorescent beads (data not

shown). The image resulting from the correlation is transformed

using the Fisher transform. A Fisher transformed Gaussian

function with s.d. corresponding to the point spread function is

fitted to the Fisher transformed correlation image using the

Levenberg–Marquardt method [18] implemented in MATLAB,

and the obtained parameters are used to localize each molecule

with super-resolution accuracy and estimate the localization error.

( f ) Maximum-likelihood estimate of synthesis
For gene expression studies, we want to estimate how many

molecules have been newly synthesized between two fluor-

escence images given that there is a chance that some of the

fluorophores present in the previous frame have not been

bleached. We formulate this as a maximum-likelihood problem
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where there are M molecules observed in frame i 2 1 and N
molecules observed in frame i. The number of molecules surviv-

ing bleaching, m, can be calculated by maximizing the

probability

pðmjM;N; p;lÞ ¼ Binðm;M; 1� pÞ � PoðN �m; lÞ;
where Bin is the binomial distribution and Po is the Poisson dis-

tribution. The maximum-likelihood estimate of the number of

new synthesized molecules is nmax ¼ N 2 mmax, where mmax

maximizes p(mjN,M,p,l). The parameter p is the bleaching prob-

ability per fluorophore per frame and is assumed to be constant.

l is the number of molecules synthesized between two frames.

In the special case of cell division between frame i 2 1 and i,
where N1 molecules are found in one daughter cell and N2 in the

other, the most likely number of newly synthesized molecules

nmax are calculated for both cells based on N ¼ N1 þ N2.

Given nmax the most likely number of newly synthesized

molecules in daughter cell 1 is the n1 that maximizes

N1
n1

� �
N2

nmax � n1

� �
because this gives the number of possible

combinations of picking n1 molecules from N1 and n 2 n1
from N2.

(g) Availability
All programs and scripts developed for this study will be made

available on request.

3. Results
(a) Throughput
Currently, one experiment returns approximately 3000 com-

plete cell histories from three traps imaged in parallel. The

total time of expenditure is 36 h. The manual effort of a

single operator amounts to 3 h, of which roughly 80 per

cent is spent prior to image acquisition. The manual work

effort to acquire and analyse the images constitutes less

than 2 per cent of the total time required to complete these

processes (figure 2a). Several overlapping experiments can

be performed to use the alternating availability of the micro-

scope and the computational framework to further improve

throughput. The number of cell histories acquired from an

image series is determined in the segmentation process.

The cells sometimes make large displacements between

two frames. When the cell tracker fails to track the cell, the

cell history is terminated. Therefore, the number of cells that

the program keeps track of decreases over time. The rate of

decay varies considerably between image series, even when

acquired under seemingly identical conditions (figure 2b).
Only the set of cell histories that completely cover the time

from division-to-division enter the analysis (figure 2c).

(b) Morphology and growth in the microfluidic device
The generation time defines the growth rate of exponentially

growing cells and is often used as an indicator of the health

or fitness. We compare cells grown with and without amino

acids in the medium (figure 3a, red and blue, respectively)

and observe average generation times of 26.4 + 7.2 and

46.8 + 17.0 min, respectively. Further, we observe an expo-

nential growth of the cell length over the cell cycle (figure

3b). In contrast to previous reports [11], we observe no obvious

dependencies of the growth rate on the position the cell occu-

pied in the trap (figure 3c). This uniformity also holds for

morphology and bacterial age, i.e. the number of divisions

during which the oldest pole of a cell has been observed. We

find that the generation times of mother and daughter cells

are weakly correlated (r ¼ 0.27 + 0.02 with amino acids, r ¼
0.07 + 0.05 without amino acids; figure 3d). The relation

between the length at birth and the generation time of a cell

history displays a correlation (figure 3e), indicating that com-

paratively longer newborns complete their cell division

faster. Although this holds qualitatively for cells grown both

with and without supplemented amino acids (red and blue),

it is less pronounced for cells grown without amino acids.

Also, cells grown with amino acids vary more in length at

birth than in generation time and the opposite is observed
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for cells grown without supplemented amino acids. The corre-

lation for cells with amino acids is r ¼ 2 0.43 + 0.02 and

without amino acids r ¼ 2 0.28 + 0.04. No significant differ-

ences in growth or morphology between strains SX701 and

JE116 are observed.

(c) Localization of transcription factors during the cell
cycle

In figure 4, we compare the intracellular localization of the

reporter constructs, Tsr–Venus (figure 4a) and LacI–Venus

(figure 4b), over the cell cycle. A localization distribution

function (figure 4, left) is constructed by mapping the

detected molecules to their position along the major axis of

the cell (x-axis) at the time in the cell cycle they were detected

(y-axis) and smoothed using a Gaussian filter. To increase

synchronicity, only observations occurring in cells with gen-

eration times between 25 and 32 min and terminal lengths

of 4–7 mm are included (780 for SX701 and 1176 for JE116).

In the right of figure 4, we visualize the detected molecules

of each construct as bi-variate symmetric Gaussian functions

to create a PALM style super-resolution plot of the intracellu-

lar distribution. We do not observe the typical polar

localization that may be expected for Tsr (figure 4a). This is

most likely because the protein is inserted at random pos-

itions in the membrane and bleaches before reaching the

Tsr clusters in the polar regions [4]. For LacI–Venus mol-

ecules (figure 4b), we observe a tendency to cluster at

positions corresponding to the nucleoids of chromosomal

DNA. The number of nucleoids doubles from two, early in

the cell history, to four in the later stages, which is consistent

with expectations for our growth conditions.

(d) Synthesis dynamics of an auto-repressed
transcription factor throughout the cell cycle

Figure 5 shows lineage trees of cell histories stemming from a

single ancestral root of strain SX701 (figure 5a) and JE116

(figure 5b) with bars corresponding to the number of

Tsr–Venus and LacI–Venus molecules at the times they were

synthesized. The trees are pruned as cells are lost from the seg-

mentation and/or from the trap. For Tsr–Venus expressed from

the lacY gene, we observe 1.5 + 0.1 molecules per expression

event and 1.7 + 0.1 events per cell cycle. For LacI–Venus,

2.2 + 0.05 molecules per expression event and 2.5 + 0.04

events per cell cycle are observed. The average expression
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rates of Tsr–Venus and of LacI–Venus molecules over the cell

cycle are shown in Figure 5c,d. Both show relatively large stat-

istical errors, especially Tsr–Venus. The cell histories with

generation time 25–32 min and terminal length 4–7 mm

are used. For strain JE116, 1418 complete cell histories and

7910 LacI–Venus molecules are observed. For strain SX701,

780 cell histories are retained from the experiment and 1176

Tsr–Venus molecules. The combination of fewer cell histories

and lower expression levels leads to larger statistical uncertainty

in determining the expression rate of Tsr–Venus from the lacY
gene. However, our results indicate a greater expression rate of

LacI–Venus at the beginning of the cell cycle.

4. Discussion
In this study we report on a method combining microfluidics,

time-lapsed single-molecule microscopy and automated

image analysis capable of monitoring the growth and

absolute number of gene expression events throughout

approximately 3000 complete individual E. coli life-spans

per experiment. Further, we demonstrate that it is possible

to use a functional transcription factor, LacI–Venus, non-

specifically interacting with DNA, to retrieve information

on both expression dynamics and super-resolution localiz-

ation dynamics throughout the cell cycle. We show that the

microfluidic chip provides a beneficial and stable environ-

ment for exponentially growing E. coli cells and a high

degree of control and reproducibility. We observe a signifi-

cant variability in generation times of individual cells.

However, we find that generation time is relatively

memory-less from generation to generation. More interest-

ingly, cells living in richer media vary more in length at

birth than in generation time and that the opposite is true

for cells living in poorer media. The underlying causes for

this size–generation time uncertainty relation and for which

range of conditions it holds are presently unclear. LacI–

Venus molecules localize onto the nucleoids in the cell. It

appears that non-specifically interacting transcription factors

are uniformly distributed over the DNA. As expected, we

find that LacI–Venus is more highly expressed than Tsr–

Venus from the lacY gene position. Our result for the latter

is consistent with the findings of Yu et al. [3] in the number

of gene expression events from the lacZ gene position

during the cell cycle. However, we observe fewer Tsr–Venus

molecules per expression event (1.7 + 0.1 instead of 4.2 +
0.5). Given that lacZ and lacY are transcribed to a polycistro-

nic mRNA, we conclude that the translation rate at the lacY
position is two to three fold lower than that of the lacZ pos-

ition. The average rate of LacI–Venus expression is slightly

higher in the beginning of the cell cycle. We propose that

this may be due to partition inequalities at cell division, in

which disfavoured cells replenish their transcription factor

pools. The experiments confirm the highly variable nature of

in vivo single-molecule observations (figure 5). We estimate

that to obtain a 5 per cent accuracy of the mean expression

rate per minute for all points in the cell cycle would require

to a total of 4000 and 16 000 complete cell histories of JE116

(lacI–Venus) and SX701 (DlacY::Tsr–Venus), respectively. Suffi-
cient observations could therefore be obtained with three

additional experiments for JE116 and fifteen additional exper-

iments for SX701. The Mather design can potentially sustain a

population of bacterial cells in a state of exponential growth

indefinitely. Many biological phenomena, such as the

development of antibiotic resistance, occur in a small subpopu-

lation of all cells and on longer time-scales than the current

longevity of an experiment using our method. Further increas-

ing the throughput and the longevity of the method to enable

the study of such phenomena represents a formidable image

analysis challenge. However, to our advantage is that the per-

formance of supervised algorithms improves and can be

made more advanced as more training data accumulate. We

are confident that more advanced algorithms can be

implemented to increase both accuracy and speed, which

would make it possible to acquire an arbitrary number of cell

histories from a single experiment.
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Supplementary methods 

 

Cropping and Aligning Images 
In raw phase contrast images, the trap only covers a fraction of the image. In the images used for the 

segmentation and tracking, the images were pre-processed in order to extract the trap. This was done 

by correlating a binary image containing a box of a size corresponding to the chip in the raw phase 

image. The size of the cut-out was reduced from 860x860 pixels to 500x500 pixels in order to 

increase speed of our algorithms. The cut-out from the phase image was correlated with the 

corresponding bright field image taken in the fluorescence channel in order to get an alignment with 

the precision of approximately one pixel. Vertical interference patterns of light that appears in the raw 

phase images also needed removal. This is done by calculating a background image averaged in time 

as well as in the horizontal direction. The background image is subtracted from each individual phase 

image. 

Division Function 
The intensity landscape of a phase contrast image closely resembles a saddle node around the point 

where the division occurs, where a local maximum is found in the direction of the major axis and 

local minima in the direction of the minor axis. The original division function of MicrobeTracker 

classified division events solely by the magnitude of a local maxima relative its surroundings in the 

image. This method often mistakenly identifies unrelated intensity variations in densely growing E. 

coli as division events. Consequently the function was further developed to increase robustness and 

accuracy. The new division function applies a linear discriminant (described under “Classification”) 

to a space spanned by five features in order to classify a potential division event as either divided or 

non-divided. Test positions along the cell profile are identified using the original division function [1] 

and around each position a reference coordinate system of 11x11 points is established. The coordinate 

system uses an orthonormal base were the first direction corresponds to the direction between the cell 

poles and the second direction corresponds to the cell width. The distance between each point was one 

pixel, and a typical cell width in our images was 15 pixels. A test image was calculated from this 

coordinate system using bi-linear 2D interpolation. The features extracted from these images are the 

relative magnitude of the local maxima as in the original division function, the two Eigen-values to 

the Hessian matrix and the scalar products of the test image with two templates of a true division 

event and a false division event. The templates were constructed prior to analysis by averaging 

corresponding 11x 11 cut-outs from manually assembled training sets consisting of 82 true divisions 

and 259 falsely identified division events respectively.  



Pole Searcher 
Cells continuously shift their position between the previous and the current frame. It was noticed that 

accurately identifying the cell poles was the most critical factor when tracking a cell and for this 

reason a method based on tracking the poles between frames was developed. The features of the pole 

searcher are the 20 principal components of the pixel intensities in a training set of 52370 manually 

segmented 15x15 pixel cell pole examples and an equal number of examples at random positions. A 

linear Bayesian probabilistic model was created from the training data (see Classification). When 

searching for the poles the method samples the surroundings of the previous poles stochastically 

according to a 4D Gaussian distribution for the spatial coordinates, cell length and an orientation 

angle.  

This sampling and testing is done pairwise for both poles. The expectation value for the cell length is 

estimated using the Euler forward method and a finite difference approximation of the derivative. The 

expectation value of the movement of the entire cell is estimated by the optical flow method [2]. The 

expectation value of the orientation angle is set to the angle in the previous image. The standard 

deviations of these distributions are estimated from the training data. Test points are sampled from 

this 4D distribution and for each test point, a pair of 15x15 reference coordinate systems are 

established, corresponding to guesses of where the cell poles are localised in the current image. 

Sample images are calculated from the reference coordinate systems using 2D bi-linear interpolation. 

The probabilistic model described in the “Classification” section is used for calculating a probability 

for each pair of sample images to be correctly aligned with the cell poles. The weighted mean of all 

samples is used as an estimate of the new pole positions, length and angle. 

First Error Detector 
Segmentation errors will propagate throughout the series and also cause neighbouring cells to be 

erroneously segmented. Therefore, it was necessary to develop methods of detecting errors as they 

were made by the segmentation algorithm. Different indicators of errors were used to create features 

for a classifier to detect incorrectly segmented cells. For training, 135 correctly segmented examples 

and 41 incorrectly segmented examples were used. The features used were 1) the relative difference in 

pixel intensity inside the cell contour, 2) the overlap between cells relative to the cell area, 3) cell 

movement between the current and previous frame and 4) angular movement between the current and 

previous frame. 

Cell Tracker 
In order to increase the number of cell generations a cell tracker was developed in order to save cells 

lost due to the first error detector. A coordinate system of 44x17 points was created in order to 

describe a cell in a standardised framework, with equal number of points independent of cell length. 

The first and last 8x17 points of the coordinate system were used for describing the cell poles. The 



intermediate 28x17 points cover the remaining cell with 28 equidistant ribs along the cell profile. The 

cell was tracked in a given frame searching for the minimal Mahalanobis distance, d, defined by 

 

,          (1) 

 

where x1 is the cell in the previous frame and x2 in the current frame. is the covariance matrix 

calculated from 13880 training examples extracted in the neighbourhood of correctly segmented cells. 

The dimensionality of the covariance matrix was reduced by projecting the training data to the 40 first 

principal components. The dimension reduction was done for the purpose of removing noise in the 

covariance matrix due to the limited number of training examples. The search was performed by 

sampling from a 3D Gaussian distribution of positions and angles. The cell length was kept fixed as 

the same as in previous frame. The search space was reduced by not allowing a relative overlap with 

neighbouring cells of more than 25% of the cell area. 

Second Error Detector 

Also the cell tracker occasionally makes errors. A second error detector was therefore developed in 

order to prevent these errors from propagating. It uses a set of five features that are different from 

those used in the first error detector. These features are: 1) the relative difference in the number of 

pixels above the threshold given by Otsu’s method [3] inside the cell contour. 2) The sum of the cell 

profile’s absolute deviation from the straight line that goes through both cell poles. This feature was 

used as a measure of overall curvature. 3) The difference in the number of edge pixels inside the cell 

profile. The edge pixels were defined as pixels having the sum of second derivatives in the image, in x 

and y directions, above a pre-defined threshold. 4) Differences in cell lengths between the two frames. 

5) The cross correlation of the cell images in the current and the previous frame. The cell images were 

interpolated from the previously mentioned 44x17 points cell coordinate system. 

 

Classification 
For all algorithms described above except the division function a Bayesian probabilistic model was 

used for classification between two classes denoted C1 and C2. For example, the classes may denote 

whether a sample image is on the pole or off the pole. The probabilistic model can be derived from 

Bayes theorem using the assumption that the features for both classes have a multivariate normal 

distribution [4]. The probability of the input data x belonging to class C1 is given by 

 

         (2) 

 

The vector w, sometimes referred to as the linear discriminant, is calculated as 



 

          (3) 

 

Where  is the shared within class covariance matrix of class 1 and 2, 1 and 2 are the mean feature 

vectors of class 1 and 2 respectively. Since class 1 and 2 may have different number of training 

samples, the shared covariance matrix is calculated as the maximum likelihood solution 

 

          (4) 

 

Where 1 and 2 are covariance matrixes of class 1 and 2 respectively. N1 and N2 are the number of 

training samples from class 1 and 2 respectively. N is the total number of samples. The number of 

features must be significantly smaller than the number of training samples in order to get a linear 

discriminant with high statistical precision. If the number of features is larger than the number of 

training samples, the covariance matrix will not be invertible.  The function , referred to as the 

sigmoid function, is defined as 

 

          (5) 

 

The quantity w0 is calculated as  

 

        (6) 

 

The prior probabilities are calculated using the maximum likelihood solution . For the 

division function, the linear discriminant was used without a probabilistic framework. In this case the 

scalar product is calculated and compared to a threshold to check whether the cell is divided or 

not. 

Parameter Estimation for Maximum likelihood Estimate of Synthesis 

Two parameters, p and , were used in the Maximum likelihood method used for estimating the 

number of new spots. The parameter p was estimated by the fraction of dots that are lost by taking one 

fluorescence image rapidly after another. If there are k extra bleaching images in between the images 

where dots are counted p=1-(1-p1)k+1, where p1 is the fractional loss of dots per bleaching frame.  

was estimated by the number of newly synthesised molecules per generation divided by the number of 

frames per generation where the dots are counted. The number of newly synthesised molecules per 

generation was estimated by counting molecules per cell in a sample where fluorescence images are 



taken much more rarely than the generation time. It is equal to the average number of molecules in a 

newly divided cell. 

 

Spot Quality Estimation 
The positions of the spots were estimated with the method by Ronneberger et al [5]. This method is 

briefly described in the main article. However, the spots vary in shape and quality and we only want 

to take into account the most significant spots. Therefore, an objective quality criterion was needed in 

order to reject spots with a quality below a certain threshold. This was done with linear regression 

according to the model 

 

 ,          (7) 

 

where Y is the 11x11 pixel cut out from the fluorescence image at the position of the spot, 1 is a 

matrix of the same size with each matrix element equal to 1 and X is a discretized 2D Gaussian 

function. The 2D Gaussian function has a mean estimated with the method by Ronneberger et al and a 

standard deviation corresponding to the point spread function. In general, the mean of the 2D 

Gaussian does not coincide with the central pixel in the 11x11 coordinate system. In the linear 

regression model, the coefficient 1 corresponds to background fluorescence and 2 to the intensity of 

the Gaussian spot. The Z-score was calculated for the 2 coefficient and we test that 2>0. In this 

work, spots with a Z-score below 6 were rejected. 

 

Reduction of Memory Footprint 
As the size of datasets that can be processed with MicrobeTracker increases, so does the memory 

footprint. This eventually becomes a critical issue when the managing of cell data starts to hamper 

performance. Originally, the cell list that contains all data of individual cells, including their contours, 

was stored as an array (a “cell array” in MATLAB terminology) where the number of elements for a 

particular frame grew exponentially with the number of frames. A new API was developed to store 

the cell list in a more compact way that grows linearly with the number of frames. To further reduce 

the memory usage by a factor of approximately 0.7 all floating-point data were stored in single 

precision, with no significant impact on the accuracy of the algorithms. Conversion from the old to 

the new format is automatically done when data is loaded, making our version of MicrobeTracker 

backwards compatible. The API for the new format was spliced off from the main code so that it may 

be used by external programs that uses the cell lists. 



Stubs and Iterative Segmentation 
To progress the transition towards fully automated segmentation the concept of stubs were introduced 

and implemented in MicrobeTracker. Whenever a cell is manipulated such that its data is invalidated 

on subsequent frames, e.g., by manually forcing it to split or by refining its contour, it is turned into a 

stub. Stubs are easily distinguished in the GUI and are exempt from further automatic segmentation 

unless MicrobeTracker is explicitly told to process stubs. This enables automated bookkeeping of 

cells with invalidated downstream data stemming from manual editing, but the stubs API was also 

integrated with the error detectors to exempt cells that the latter identify as erroneously segmented 

from further processing; i.e. cells caught in the error detector turn into stubs. The present design of the 

first error detector renders false positives that wrongly exempt cells from processing at subsequent 

frames. To compensate for that shortcoming all newly formed stubs are optionally and automatically 

segmented one or several times to see if a sensible cell model can be constructed. A single iteration 

has proven to take care of most false positives, extending the expected number of frames that a cell 

can be automatically segmented before MicrobeTracker loses track of it. It should be emphasized that 

this effect will be reduced or eliminated if the error detection is further improved such that it gives 

less false positives. For this work, the manual effort was only done in the initial frame. 
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Transcription factors mediate gene regulation by site-specific 
binding to chromosomal operators. It is commonly assumed 
that the level of repression is determined solely by the 
equilibrium binding of a repressor to its operator. However,  
this assumption has not been possible to test in living cells. 
Here we have developed a single-molecule chase assay to 
measure how long an individual transcription factor molecule 
remains bound at a specific chromosomal operator site.  
We find that the lac repressor dimer stays bound on average 
5 min at the native lac operator in Escherichia coli and that 
a stronger operator results in a slower dissociation rate but a 
similar association rate. Our findings do not support the simple 
equilibrium model. The discrepancy with this model can, for 
example, be accounted for by considering that transcription 
initiation drives the system out of equilibrium. Such effects 
need to be considered when predicting gene activity from 
transcription factor binding strengths.

Transcription factors are the major regulators of gene expression. 
Transcription factor–based regulation of transcription initiation is 
often described by a simple operator occupancy model, where in 
the case of repressors it is assumed that transcription is ‘off ’ when 
the repressor is bound and ‘on’ when the promoter is free1,2. In this 
scenario, the resulting ratio of expression levels with and without 
repressor, i.e., the repression ratio (RR), becomes

RR on off

on

where off is the average time the repressor is bound and on is the 
average time the promoter is free (Supplementary Note). The repres-
sion ratio is high when the repressor is bound for a long time (large 

off) or when the repressor concentration is high, which leads to fast 
binding (small on). This simple equation has a central position in 
quantitative biology as it relates the state of the cell, i.e., transcrip-
tion factor concentrations, to change in state, i.e., gene expression.  

(1)(1)

The equation is therefore used in most synthetic and systems bio-
logy studies although the underlying assumptions have not been 
tested in living cells, where cooperative binding, active transcrip-
tion, DNA replication and chromosome dynamics could influence  
gene regulation.

The challenge of testing the operator occupancy model in living 
cells is to measure the rates of operator association, on

1, and dissocia-
tion, off

1 , directly in live cells rather than inferring them from reporter 
expression assays3,4. Recently, we developed a direct single-molecule 
microscopy assay to measure the rate of binding to a single lac opera-
tor site in the bacterial chromosome5. Here we present an in vivo 
version of a biochemical chase assay6, which enables direct measure-
ments of spontaneous dissociation of the lac repressor protein, LacI, 
from individual chromosomal operator sites (Fig. 1a,b). In our assay, 
operator-bound fluorescent LacI-YFP dimers that spontaneously dis-
sociate are replaced (chased) by non-fluorescent LacI tetramers. Non-
fluorescent LacI molecules are present in excess (Supplementary 
Fig. 1a) and prevent rebinding of fluorescent LacI. The spontaneous 
dissociation process can thus be followed by counting the average 
number of bound fluorescent molecules per cell over time. To start 
the experiment with the fluorescent LacI bound, a point mutation 
has been introduced into the fluorescent LacI such that it cannot 
bind the inducer isopropyl -d-1-thiogalactopyranoside (IPTG)7. 
The presence of IPTG prevents binding of the non-fluorescent LacI 
until IPTG is removed at the start of the experiment (Supplementary 
Fig. 1b,c). To ensure that dissociation kinetics were independent of 
IPTG outflux, we showed that the intracellular concentration of IPTG 
within 1 min of its removal dropped to a level where non-fluorescent 
LacI bound effectively (Supplementary Fig. 2 and Supplementary 
Note), and we subsequently analyzed dissociation kinetics begin-
ning at 1.5 min after the removal of IPTG. An extended analysis of 
how the finite concentrations of non-fluorescent LacI influenced the 
results is provided in the Online Methods. The model for replication- 
induced LacI dissociation is extended in the Supplementary Note. 
The kinetic assays were performed on E. coli cells residing in a 
microfluidic growth chamber (Fig. 1c,d), which allowed the cells to 

Direct measurement of transcription factor dissociation 
excludes a simple operator occupancy model for gene 
regulation
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be maintained in a constant state of exponential growth (generation 
time of 26 min)8 as well as allowing rapid medium exchange (in 2 s).  
Image acquisition and medium exchange were automated and syn-
chronized so that the experiment was repeatable with high precision 
(Fig. 1e). Cell segmentation and detection of fluorescent spots were 
also automated and enabled the mapping of individual molecules onto 
an intracellular coordinate system for an arbitrary number of cells 
(Fig. 1f). For example, Figure 1g (as well as Supplementary Fig. 3)  
shows the probability distribution of the intracellular location of spe-
cifically bound LacI-YFP molecules as a function of position in the 
cell cycle.

We used the in vivo chase assay to measure the kinetics for two 
operators of different strength, the natural lacO1 operator and the 
stronger, symmetric artificial lacOsym operator. The dissociation 
curves for the LacI-YFP dimer from the lacO1 and lacOsym operators 
at 37 °C are shown in Figure 2a. The average time LacI stayed bound 
to its operator ( off) was 5.3  0.2 (s.e.m.) min for lacO1 and 9.3   
0.4 (s.e.m.) min for lacOsym. The average time before the operator 
was bound by a repressor ( on) was measured under identical experi-
mental conditions (Fig. 2b) and was 30.9  0.5 (s.e.m.) s for lacO1 and 
27.6  0.6 (s.e.m.) s for lacOsym. Thus, a stronger operator has a slower 
dissociation rate but a similar association rate.

We were then ready to ask whether the measured association and 
dissociation times could be used to predict the repression ratio using 
the simple operator occupancy model, i.e., equation (1), as given by the 
model in Figure 3a without any cooperative interaction between LacI 

and RNA polymerase (RNAP) (  = 1, as defined in Fig. 3a and equa-
tions (3) and (4) in the Online Methods). Combining the association  
and dissociation measurements, we calculated that the repression 
ratio was expected to be 11.2  0.5 (s.e.m.) for lacO1 and 21.2  0.9 
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Figure 1 The single-molecule chase assay. (a) Outline of the single-molecule chase assay. When fluorescent LacI dimers (yellow) dissociate from the 
lac operator (red box), they are replaced by non-fluorescent wild-type LacI tetramers (blue) present in excess. (b) Examples of fluorescence images 
(4-s exposure) taken before and at different time points after the removal of IPTG. Scale bar, 4 m. The inset image is magnified by 2× relative to the 
original image. Red circles indicate detected operator-bound LacI-YFP. (c,d) The microfluidic switching chip (d) contains 51 traps as illustrated (c). 
Each trap harbors ~250 E. coli cells and allows for sustained exponential growth and fast change of medium. (e) Medium switch–induced transcription 
factor dissociation and association. When medium is switched from high 2-nitrophenyl -D-fucopyranoside (ONPF; anti-inducer) to high IPTG (inducer), 
transcription factors dissociate in a few seconds (inset). When medium is switched back, transcription factors associate in ~30 s. The graph shows three 
switching cycles separated by 6-h recovery periods. (f) Automatically segmented cells using a phase-contrast image. Scale bar, 4 m. (g) Intracellular 
positions of bound LacI-YFP molecules (x axis) mapped to the cell replication cycle (y axis). Individual cell replication cycles are synchronized so that 
the time of 0 min always implies a cell length of 4.25 m. Horizontal lines mark the average times for cell divisions.
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Figure 2 Kinetic measurements for individual lac operators.  
(a) Dissociation curves for lacOsym and lacO1. n = {i, j, k} implies i 
repetitions 6 h apart for chip 1, j repetitions for chip 2 and k repetitions 
for chip 3. Error bars,  s.e.m.; n = {2, 3, 2} (lacO1) and n = {3, 2, 3} 
(lacOsym). Inset, temperature dependence for dissociation from lacO1. 
Error bars,  s.e.m.; n = {2, 3, 2} (37 °C) and n = {2, 2} (25 °C).  
(b) Association curves for lacOsym and lacO1. Error bars,  s.e.m.;  
n = {2, 3, 2} (lacO1) and n = {3, 2} (lacOsym). Inset, temperature 
dependence for association with lacO1. Error bars,  s.e.m.;  
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©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

NATURE GENETICS ADVANCE ONLINE PUBLICATION 3

L E T T E R S

(s.e.m.) for lacOsym (Table 1). The corresponding measurements of 
the repression ratios for the LacI-Venus dimer based on an enzymatic 
reporter assay were 10.0  1.3 (s.e.m.) for lacO1 and 29.7  3.4 (s.e.m.) 
for lacOsym (Table 1). We conclude that the operator occupancy model 
accounts for the repression ratio for lacO1 but not for the ratio for  
lacOsym, where the observed repression ratio was higher than expected 
when considering association and dissociation rates alone.

This discrepancy for lacOsym motivated the construction of more 
complex interaction models. One possibility was an equilibrium 
model where LacI interacts cooperatively with RNAP or another pro-
tein binding near the operator and where the degree of cooperativity 
depends on the operator sequence. This model is represented (Fig. 3a)  
using  = 1.5 and  = 1 for lacOsym and lacO1, respectively, and 
resulted in excellent agreement with the measured repression ratios. 
Such a difference in cooperativity between lacO1 and lacOsym could 
be due to the markedly different bending of DNA when LacI is bound 
to the different operators8,9. Operator sequence–specific interactions 
between LacI and RNAP have previously been suggested when the 
operator is positioned upstream of the placUV5 promoter10. Although 
this equilibrium mechanism is also possible with the operator located 
downstream of the promoter, a model with operator-specific coopera-
tivity was not needed to describe our data. Cellular reaction dynamics 
are commonly out of equilibrium, and we therefore also considered 
more simple non-equilibrium schemes. In Figure 3b–d, we outline 
three such schemes that can increase the repression ratio beyond the 

ratio predicted by the simple operator occupancy model. We discuss 
them individually below.

The first non-equilibrium scheme (Fig. 3b) is similar to the scheme 
with cooperative interaction with RNAP (Fig. 3a) except that active 
transcription initiation clears the promoter in the absence of LacI. 
Slow transcription initiation leads to a repression ratio as in the 
cooperative equilibrium model, whereas fast transcription initiation 
leads to a reduced repression ratio, as it is possible to synthesize tran-
scripts before the repressor has equilibrated with DNA. Interestingly,  
we found that the transcription rate for the lac operon with full induction  
was 5.4  0.5 (s.e.m.) times higher in the strain with the lacO1 
sequence than in the strain with the lacOsym sequence next to the pro-
moter (Supplementary Note). This difference in transcription rate, 
in combination with the measured association and dissociation rates, 
is sufficient to fully account for the measured repression ratios when  

 = 1.5 for both lacO1 and lacOsym. The reason for this is that lacOsym 
is closer to the equilibrium case (with slow transcription) described 
above, whereas lacO1 is out of equilibrium (with fast transcription) 
and thus has a lower repression ratio than what is expected from the 
equilibrium model alone (Fig. 3b). As a consequence, no operator 
sequence–dependent interaction between LacI and RNAP is needed 
in this case, as the sequences are transcribed at different rates.

Also in the second non-equilibrium scheme (Fig. 3c), transcription 
initiation drives the system out of equilibrium but this time without any 
cooperative binding between RNAP and LacI. In this scheme, RNAP 
binds to one of the alternative lac promoters next to the operator- 
bound LacI but does not continue into open complex formation11. 
In contrast, when RNAP binds in the absence of LacI, it proceeds 
rapidly and irreversibly into transcription, clearing the promoter. 
Consequently, LacI will most often bind in an RNAP-free promoter 
region and dissociate from an RNAP-bound operator region. Thus,  
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Figure 3 Models of gene regulation. (a) At equilibrium, the repression ratio only depends on the fraction of time the operator is bound independent of 
kinetic schemes. Owing to cooperative binding (  > 1), the ratio can be modulated by other factors. TF, transcription factor; Kd, equilibrium binding 
constant. (b) Transcription initiation can drive the system out of equilibrium such that the repression ratio depends on the rate of transcription 
initiation. (c) The transcription factor binds and dissociates slower when RNAP is bound. Transcription drives the system out of equilibrium such that 
the transcription factor associates at naked DNA and dissociates at RNAP-bound DNA. (d) When the transcription factors are maintained in a reduced 
volume, v, transcription factor association rates are in the simplest case increased by the corresponding factor.

Table 2 Binding kinetics dependence on roadblocks

on (s) off (min) Repression ratio

Without roadblock 27.6  0.6 9.3  0.4 21.2  0.9

With roadblock 37.1  0.6 11.6  1.4 19.7  1.1

Association and dissociation rates measured for LacI-YFP with or without TetR  
binding next to one side of the operator lacOsym. Data are shown as mean values  

 s.e.m.; n = {i, j, k} implies i repetitions 6 h apart for chip 1, j repetitions for chip 2 

and k repetitions for chip 3: n = {4, 2} ( on, lacOsym with roadblock) and n = {4, 3, 3} 
( off, lacOsym with roadblock). Data without roadblock are the same as in Table 1.

Table 1 Comparison of repression ratios from reporter expression 
assays and direct single-molecule in vivo measurements

Repression ratio Single-molecule kinetics

Operator region
Reporter  

expression assaya
on off

on on (s) off (min)

lacO1 10.0  1.3 11.2  0.5 30.9  0.5 5.3  0.2

lacOsym 29.7  3.4 21.2  0.9 27.6  0.6 9.3  0.4

Data are shown as mean values  s.e.m.; n indicates replicates from individual experi-

ments (reporter expression): n = 9 (lacO1) and n = 8 (lacOsym). See Figure 2 for 
details of the single-molecule experiments.
aThe repression ratio is induced (+ IPTG) divided by repressed (− IPTG) lacZ expression  
in terms of Miller units (normalized -galactosidase activity) and is normalized to the  
lower repressor concentrations in the kinetic experiments (Supplementary Fig. 8 and  
Supplementary Note).
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if a bound RNAP molecule slows down LacI dissociation, this would 
result in repression beyond that predicted in the equilibrium model, 
even if the binding strength for LacI is unaltered by the bound RNAP. 
The average times for LacI association and dissociation are expected 
to increase by up to a factor of two when a protein is bound next to 
the lac operator, as sliding along DNA in and out of the operator is 
blocked from one side5. To test this hypothesis, we positioned the tet 
repressor protein, TetR, next to the lac operator site and measured the 
times for LacI dissociation and association. We found that the time 
for association increased by a factor f = 1.35  0.04 (s.e.m.) when TetR 
was bound next to lacOsym and that the effect on dissociation was 
similar (Table 2 and Supplementary Fig. 4), as was expected from 
detailed balance when steady-state binding is not altered. The effect 
was smaller (f = 1.16  0.03 (s.e.m.)) for lacO1, for which the lower 
binding probability reduced the impact of the diffusion blockade, as 
the transcription factor will need multiple attempts to bind anyway5.  
If RNAP binds in a closed complex near LacI and blocks sliding in 
the same way as TetR, repression ratios would be expected to increase 
up to 12.8  0.6 (s.e.m.) and 28.2  1.4 (s.e.m.) for lacO1 and lacOsym, 
respectively, from this effect alone.

In the third scheme (Fig. 3d), active transport or a combination of 
slow diffusion and degradation maintains a higher concentration of 
LacI close to the operator sites. This higher concentration of LacI can 
lead to faster association rates than we report above, as our association 
process started from any position in the cells when IPTG dissoci-
ated from LacI. A local gradient effect is expected to be greater for 
lacOsym than for lacO1 as LacI is more likely to bind lacOsym before 
escaping to a random position5. Furthermore, previous studies have 
reported that the spatial distribution of LacI in the cell under poor 
growth conditions depends on where in the chromosome the pro-
tein is encoded12,13. However, under our experimental conditions, 
we could not observe any difference in the spatial distributions of 
non-operator-bound LacI expressed from different chromosomal 
loci with different intracellular locations (Supplementary Fig. 5 and 
Supplementary Note). Using single-particle tracking, we also did 
not observe that LacI could be trapped locally in the nucleoid for 
more than a few seconds. This timeframe is far shorter than what 
would be required to maintain a locally higher concentration of LacI 
close to the point of synthesis (Supplementary Fig. 6). In addition, 
we did not observe a change in the repression of the LacI-regulated 
lacZYA operon when the lacI gene was moved to its mirror position on 
the other chromosome arm (Supplementary Note). Together, these 
results make it unlikely that LacI association is faster under steady-
state growth than in our measurements owing to local concentration 
gradients of the repressor.

Our single-molecule chase method has allowed us to identify incon-
sistencies in the simple operator occupancy model of gene regulation 
in living E. coli cells, a model system where it is possible to conduct 
the experiment with sufficient accuracy. The inconsistencies are most 
easily explained by simple non-equilibrium mechanisms driven by 
transcription initiation itself. The same mechanisms are expected to 
operate in eukaryotic cells, where the added complexities of ATP-
dependent chromatin remodeling14 and clearing of the transcription 
factor binding region by divergent transcription15 will contribute 

to keeping operator occupancy out of equilibrium. Overall, non- 
equilibrium transcription factor kinetics add a new layer of complexity  
to the genomics puzzle beyond the steady-state mapping of transcrip-
tion factor concentrations to gene activity.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Strain construction. Strains were constructed in a BW25993 background16 
using the  Red16 or pKO3 (ref. 17) protocols. Detailed strain descriptions 
can be found in the Supplementary Note, Supplementary Figure 7 and 
Supplementary Table 1.

Growth conditions. Cells were grown in M9 minimal liquid medium sup-
plemented with 0.4% glucose and RPMI amino acids (Sigma). For growth 
of strains harboring pBAD24 plasmids encoding lacI, lacI-Venus or xylR,  
the medium was supplemented with carbenicillin (Sigma).

For microfluidics experiments, saturated (overnight) cultures were diluted 
1:200 in 40 ml of medium and grown at 37 °C for 4 h unless otherwise speci-
fied. Cells were collected by centrifugation and immediately loaded onto 
microfluidic chips as previously described18.

Information about growth conditions in other microscopy experiments and 
expression assays can be found in the Supplementary Note.

Fluorescence microscopy and microfluidics. Microfluidic switching 
chips—design and preparation. Microfabrication of the templates and con-
struction of the individual devices were performed in accordance with 
the protocols described previously18 with the exception that an extra 
medium port was added to allow for rapid exchange of medium. Inert 
polystyrene beads of 2 m in diameter (Sigma-Aldrich) were added to one 
medium reservoir. Beads allowed for the detection of flow rates and flow 
directions necessary for determining the induction states of the device  
during operation.

Relative height differences between medium reservoirs were used to 
control the pressure gradients and, thereby, flow rates and directions in the 
device during running and medium exchange. Medium exchange, i.e., anti-
correlated elevation/lowering of reservoirs, was automated by using program-
mable linear actuators (Robocylinder, Intelligent Actuators), the control of 
which was synchronized with image acquisition using a custom-written  
Java program.

Optical setup. We used a Nikon Eclipse Ti-E microscope (with Nikon’s Apo 
TIRF 100×/1.49 oil immersion objective) equipped with a dichroic mirror 
(Chroma t515.5rdc), an excitation filter (Chroma 514/10), an emission filter 
(Chroma 550/50) and an EMCCD camera (iXon EM+ DU-897 from Andor). 
The camera was cooled to −80 °C, and the linearized electron-multiplying gain 
was set to 150. A 2× magnification lens was placed in the emission path before 
the camera. Fluorescence was excited by a Coherent Innova-304 Ar+-laser at 
514 nm. When measuring association and dissociation rates, the power was 
15 W/cm2 using 4-s exposures. For single-particle tracking, the power was 
650 W/cm2, and, for overnight growth experiments, the power was <5 W/cm2 
(see the Supplementary Note for details). A second camera (Scion Corp) 
was used for external phase-contrast imaging. The microscope was enclosed 
in an OkiLab cage incubator where the set temperature was maintained at  
37  0.1 °C, 42  0.1 °C or 25.5  0.3 °C. Image acquisition was controlled by 
the open-source software Manager19 in combination with custom-written 
acquisition scripts.

Spot detection. We used á Trous wavelet three-plane decomposition20 and 
detected the spots in the second wavelet plane. Significant wavelet coeffi-
cients were determined through scale-dependent k  thresholding where  is 
the s.d. of the second wavelet plane, estimated by the MAD estimate21, and  
k = 3 (association experiments) or k = 4 (dissociation experiments).

LacI-Venus kinetics using automated switching of medium. Experiments 
were started when cells had grown to fill the whole microfluidic traps. For a 
fast and well-defined switch of medium, the medium reservoirs were con-
nected to linear actuators and controlled from the computer in parallel with 

Manager-run imaging acquisition.
For the analysis of operator-bound single LacI molecules in fusion with the 

fluorescent protein, YFP-derived Venus22 (LacI-Venus), spots were detected 
as described above. Because the traps of the microfluidic chip were full with 
densely packed cells, we normalized the number of spots per trap by total 
cell area.

Association with a single operator. The principle of the experiment was essen-
tially as presented previously5,23 with the exception that the experiment was 
performed in the microfluidic device to allow for direct comparison with the 
corresponding dissociation experiment at 37 °C. The experiment was started 
by switching the medium for the induced cells from one containing IPTG to 
one containing the competitor ONPF at a 1 mM concentration. The addition 
of ONPF at high concentration was used to ensure that the association rate was 
not limited by the time it took for IPTG to leave the cell. Cells were imaged 
with 4-s exposures with a frame rate of ~0.18 frames/s. Fluorescent spots were 
counted as described above, and binding curves with data from the same strain 
were fitted (Igor Pro (v6.12A)) to the single exponential function y = a(1−be−kt), 
where a and b were independent for each series and k was the same for all series. 
Experiments were repeated to generate sufficient statistical power to test the 
hypothesis. For visualization in Figure 2b, the a and b parameters were used to 
normalize the data points in individual series before calculating the average and 
s.e.m. for each time point and plotting together with the fitted curve.

In Supplementary Figure 2c, the rate of LacI-Venus association is plotted as 
a function of the added ONPF concentration, and the plot shows that a 1 mM 
concentration is saturating. It also shows that LacI binds 1 min faster with the 
addition of ONPF at a saturating concentration, which suggests that it takes up to 
1 min for the intracellular IPTG concentration to drop to a level where LacI can 
bind the operator. This timing is important for the dissociation assay described 
below. The relative difference in LacI-Venus concentration between strains is 
described in the Supplementary Note and Supplementary Figure 8.

Chase assay for the measurement of dissociation rates. In the in vivo chase 
experiment, LacI-Venus molecules are first bound to individual, single 
operator sites; then, through competition with non-fluorescent wild-type  
LacI in excess, they can be seen to dissociate as the number of fluorescent spots  
decreases. The chase experiment relies on the possibility of inducing bind-
ing of non-fluorescent LacI in a well-defined timeframe while LacI-Venus is 
already bound. To accomplish this, a single point substitution was introduced 
in the lac repressor gene (encoding LacI p.Asp274Asn), which causes more 
than a 1,000-fold reduction in IPTG affinity without changing operator bind-
ing strength7. The gene (referred to as lacIs) was expressed in fusion with 
Venus, resulting in a chromosomally expressed LacIs-Venus that does not 
dissociate, even in the presence of 1 mM IPTG (Supplementary Fig. 1c). 
Wild-type LacI was expressed from an arabinose-inducible promoter on the 
plasmid pBAD24.

The ratio between LacIs-Venus and wild-type LacI monomers when the 
plasmid was uninduced is seen at time 0 in Supplementary Figure 1a. When 
the plasmid was fully induced for a long time, the competitor copy number 
became so high that either 1 mM IPTG did not saturate LacI to prevent oper-
ator binding or the LacIs-Venus–LacI heterodimers, which naturally form 
(and are dominant when LacI is overexpressed) and bind one IPTG molecule, 
did not bind the operator. When instead XylR was expressed from pBAD24,  
LacIs-Venus was unaffected by IPTG (Supplementary Fig. 1c).

Before the switch, with IPTG present, LacIs-Venus homodimer bound the 
operator. When IPTG was removed at t = 0, there was a short (1-min) period of 
increased binding (Supplementary Fig. 1b). This increased binding is probably 
due to the association of heterodimers (in competition with non-fluorescent 
wild-type LacI) to available operator sites. Because of this initial association 
and the time delay required to reduce the intracellular IPTG concentration 
to a level where non-fluorescent LacI bound (see below and Supplementary 
Fig. 2), we fit the dissociation process from 1.5 min after switching to medium 
without IPTG to an exponential decay process that also took into account the 
fact that the transcription factor was displaced once per generation owing to 
replication. The implications of the approximation are quantified below and 
in the Supplementary Note. Experiments were repeated to generate sufficient 
statistics to test the hypothesis.

Time-dependent excess of non-fluorescent LacI. We induced the expression of 
non-fluorescent LacI at time 0 (medium containing 1 mM IPTG was switched 
to medium containing 0.2% arabinose). This switch resulted in a time- 
dependent increase in the concentration of the non-fluorescent LacI chase 
molecules (Supplementary Fig. 1a). This time-dependent increase motivated 
us to calculate how this would influence the measured dissociation kinetics. 
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The equations that describe the probabilities that an operator is initially bound 
by a fluorescent molecule (PF), that it is empty (PE) or that it is occupied by a 
non-fluorescent molecule (PN) were
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Here q(t) is the fold excess of non-fluorescent transcription factor, which was 
measured directly by protein blot (Supplementary Fig. 1a) and is closely 
approximated by q(t) = 4 + t2, where t is the time in minutes after the addi-
tion of IPTG.

For an infinitely high q, PF will decay as a pure exponential with rate off
1  

starting from t = 0. For a finite q, the observed dissociation process is slightly 
slower. When fitting a single exponential function to the solution of PF(t), 
using parameters from Table 1, starting from 1.5 min and ending at 20 min, 
the dissociation rate is underestimated by up to 11% for lacO1 and by up to 
9% for lacOsym owing to the finite concentration of non-fluorescent LacI. 
This underestimation would change the predicted repression ratios (based 
on the simple operator occupancy model) to 10.2 for lacO1 and 19.4 for  
lacOsym, which do not alter the conclusions drawn when assuming large excess 
of non-fluorescent LacI.

Models. Cooperative LacI binding. Consider the scheme in Figure 3a,b writ-
ten in further detail.
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Here LacI and RNAP bind  times longer when they are binding at the same 
time. The repression ratio in this non-equilibrium scheme is
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These are the limiting approximations given in the main text (Fig. 3a,b). 
To see what we obtained with specific numbers, we used the measured on 
and off values and assumed that  = 1.5, k3 = 1 min−1 and k4 = 0.1 min−1. 
These numbers gave RR = 10.0 and an induced transcription initiation rate 
of 0.61 min−1 (refs. 24,25) when k6 = 1.7 min−1 for lacO1 and RR = 28.2 and 
an induced transcription initiation rate of 0.61/5.4 min−1 for lacOsym when  
k6 = 0.14 min−1. The value of 5.4 is the measured difference in expression 
between the induced lac operon controlled by lacO1 and lacOsym.

Non-equilibrium model with roadblock. Consider the scheme in Figure 3c writ-
ten in further detail.
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Assuming that the system is far from equilibrium, such that k6  k3 + k4, and 
that the transcription initiation rate is fast enough, such that k1(k3 + k4)/(k2k6) 

 1, then the repression ratio is
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Further, assuming that RNAP binding is strong, such that k3  k4, that the 
turnover of RNAP is faster than the turnover of the transcription factor, 
such that k3  k1 + k2, and that f is not very much smaller than 1, then the  
repression ratio is
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E. coli can grow and divide faster than the time re-
quired to replicate its genome. This is accomplished 
by using overlapping replication cycles where mul-
tiple parallel replication processes are initiated in 
the mother or even grandmother generation. In ad-
dition, cells living under constant growth conditions 
will vary considerably in their cell cycle times and 
division sizes. In spite of these fluctuations, cells 
have to terminate one round of replication during 
each cycle. It has been unclear how cells accomplish 
this without cell cycle checkpoints which, in turn, 
would be inconsistent with overlapping replication 
cycles. Using single molecule fluorescence microsco-
py to localize and track the replisome-protein DnaQ 
throughout thousands of bacterial cell cycles, we 
find that initiation of replication occurs at a rela-
tively fixed volume per number of origins inde-
pendently of the time from division. This ratio is al-
so constant for different growth conditions. Further, 
we find that a simple model of the bacterial cell cy-
cle, where division occurs a constant time after rep-
lication initiation, accurately reproduces the varia-
tions in timing and sizes at divisions.  

Significance 
Replication of DNA in Eukaryotic cells is tightly coor-
dinated with the cell division cycle via checkpoints that 
cannot be passed until previous steps have been com-
pleted. In contrast, rapidly growing bacteria cannot 
have this type of checkpoints since they need to use 
overlapping replication cycles in order to achieve a 
generation time shorter than the time it takes to com-
plete one round of replication. Using single molecule 
imaging of individual replication machineries through-
out the lifespan of thousands of bacterial cells, we iden-
tify a simple regulatory principle that coordinates DNA 
replication and cell division. The scheme allows each 
cell to grow exponentially without checkpoints and ex-

plains the large variation observed in the generation 
time and cell size for genetically identical bacteria.  

Introduction 
In the Cooper-Helmstetter model the E.coli cell cycle is 
regarded as a deterministic process, where all cells in a 
population grow at the same rate, initiate replication at 
a same time after birth and divide after the same time, 
as determined by the growth rate [1]. Replication of the 
E. coli chromosome proceeds bi-directionally from the 
origin of replication locus, oriC, to the terminus locus, 
ter, and the duration of one round of replication, the C-
period, is reported to last ~40 minutes independently of 
growth conditions [1]. The period between the termina-
tion of one round of replication and the completion of 
the next division event is referred to as the D-period 
and is reported to last ~20 min [1]. This model concep-
tualizes how exponentially growing cells can maintain 
a stable cell cycle which is shorter than the C-period by 
initiating and terminating one round of replication per 
cycle. The key to accomplishing this is by maintaining 
parallel rounds of replication which are initiated and 
terminated during different cycles.  

Studies of individual bacteria have revealed that iso-
genic cells under constant growth conditions vary con-
siderably in size and division timing [2, 3]. How stable 
cell cycles are maintained in the midst of these fluctua-
tions is not yet well understood. Assuming that each 
cell grows as fast as possible given the available nutri-
ents, the molecular control systems responsible for es-
tablishing the timing of replication initiation and divi-
sion must be able to match the synthesis of new chro-
mosomes with the growth rate so that there is at least 
one chromosome in each daughter cell after division. 
Given the cell to cell variability, the question arises 
whether initiation of DNA replication is triggered at a 
certain cell size or time after division, or if it is division 
that is triggered at a certain time after replication?  







 
Fig. 3: Intracellular positions along the long-axis for replisomes in slow (A, B) and fast (C, D) growing cells 
together with positions for oriC regions (E, F) in fast growing cells. Cells that have been tracked for a complete 
generation are included in the analysis and are here aligned by their volume (A, C and E) or by the time from when 
they last divided (B, D and F). In all panels the (top) part shows the fraction of all analyzed cells that are included 
in the volume (A, D, and G) or time (B, C, E) segment. The total number of analyzed cells is 5352 for replisomes at 
slow growth (A, B), 13003 for replisomes at fast growth (C, D) and 5379 for oriC regionat fast growth (E, F). The 
(middle) part of each panel show frequencies of cells in certain intracellular positions for given cell volume (A, C, 
and E) or for given times (B, D and F). The frequencies are normalized such that when each volume or time 
segment is summed for all intracellular positions it gives the average number of detected replisomes (A-D) or oriC 
regions (E, F) as shown on the (bottom) of each panel. Red curve is a fit to a Gauss error function over the data in 
the region covered by the red curve. Dashed vertical lines show the half max of the error function fit. White solid 
lines indicate average cell long-axis length. 
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Cell segmentation and Tracking. The classifiers used 
in segmentation and tracking are outlined in Figure S1. 
The algorithms corresponding to blocks 2-6 in the flow 
chart in Figure S1 are described in Ullman-Walldén et 
al 2012 [3] and blocks 1, 7 and 8 are described below.  

To detect cells in phase contrast images, the segmenta-
tion algorithm of the microbeTracker suite is applied 
using 10 different edge detection parameter sets. A 
classifier is used to identify incorrectly segmented cells 
and the different segmentations are combined into one. 
For classifying segmented cells, a coordinate system 
(Figure S2) of 44x17 points was created in order to de-
fine an image of a cell in a standardized framework, in-
dependent of cell length and curvature. The cell coordi-
nate system uses a fixed grid of 8x17 points at both cell 
poles. The other 18x17 points are stretched depending 
on the cell length. In addition, 80 Fourier descriptors 
[16] are used to describe the shape of the cell contour. 
Also, the cell angle, with 0 degrees defined as parallel 
to the x-axis, is used as a feature. In total, 829 features 
are used for the segmentation error classifier. Dimen-
sion reduction using principal component analysis was 
tried, but yielded a worse result. A set of 3276 training 
examples of erroneously segmented cells together with 
a set of 7818 correctly segmented cells is chosen manu-
ally. The classification tree inherent in MATLAB is 
trained with these examples. The same cell can be de-
tected and approved in more than one of the sets of 
segmented cells and it is necessary to decide with seg-
mentation is the best. For this purpose the positive 
training examples are described as a multivariate 
Gaussian model. By using this model, cells are given a 
probability for belonging to the distribution of correctly 
segmented cells. The segmentation out of the 10, which 
is most probable of being correct, is then selected. 
When the complete set of trackers and error detectors 
(Blocks 2-6 in Figure S1) is finished, the segmentation 
algorithm (described in the paragraphs above) is re-
executed in order to replace eventual cells lost in the 
tracking (Block 7 and 8, Figure S1). To save time the 
re-segmentation is performed only at positions where 
there are lost cells and cells disapproved by the seg-
mentation error classifier. Again, the cell is selected 
that has highest probability according to the distribution 
of correctly segmented cells.  

Single molecule detection and localization. Identifi-
cation of single molecules was carried out as described 
previously [11] using a wavelet plane decomposition 
based method.  In order to assign fluorescent molecule 
to cells, a coordinate system was established that maps 
a position in the phase contrast image to a correspond-
ing position in the fluorescence image. For this purpose 
we used a brightfield image captured on the same cam-
era as the fluorescence image. The brightfield image 
was aligned using normalized cross correlation with the 
phase image in order to align the fluorescence images 
with the phase image. With the global coordinate sys-

tem established, each dot could then be assigned to a 
local coordinate system inside the cell. 
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Supplementary Information 
 

Materials and Methods 

Detection of FtsQ-GFP signal drop in single cells 

To identify the time point of the decrease in FtsQ-GFP signal the following steps 
were taken. To obtain an intensity profile along the long axis, the intensity values 
along the short axis of the cell outline were averaged for each point along the long 
axis of the cell. The standard score, i.e. z=(x-mean(x))/std(x), was computed for this 
profile, where mean(x) and std(x) are the mean and standard deviation of the values of 
the profile. The long axis of the cell was then scaled to a relative length, i.e. to span 
from -0.5 to 0.5. The profile values at each time point were then added to an intensity 
distribution (Fig. 2A). This distribution was subsequently Fourier transformed along 
the horizontal direction as shown in (Fig 2A). The FtsQ-GFP bands were identified as 
the most pronounced peak in the resulting power spectrum. A weighted average of the 
intensity along the long-axis for each time point yields an initial time-trace. Here the 
weights where a Gaussian function with average at the detected mid of the band and 
standard deviation of 1 pixel on the camera. Onto the initial time-trace we multiply a 
Gaussian error function, which gives the final trace (Fig 2B of the main text, blue 
solid line). To find the drop in signal intensity a t-test score was calculated for each 
possible combinations of duration in the high and low state respectively. The 
combination with the highest score was then selected (Fig. 2B of the main text, red 
dashed line) and the time when this description goes from the high state to the low 
state is used as drop in FtsQ-GFP signal. 

Cell-growth simulations 

Simulations of cell growth based on initiation of DNA replication and cell division 
was carried out according to Algorithm 1. Based on data from slow growing cells we 
set the average initiation length per oriC copy number to 1.5 µm (Fig. 3 in the main 
text). For the fast growing cells the initiation length per oriC is chosen such that it has 
the same initiation volume per oriC. i.e. If = Is * (rs/rf)2, where If and Is are the 
initiation lengths per oriC in the fast and slow respectively and rf and rs are the cell 
radii in the fast and the slow respectively. From our measurements rs = 0.92 µm and rf 
= 1.15 µm (Fig S3). We set the standard deviation of the initiation length per oriC 
region to 0.2 µm. Based on our estimates (see below) we set the C period to 60 
minutes for both the slow and the fast growing cases. For the slowly growing cells the 
D period is set to 50 minutes (see below) and the growth rate to 0.0089 min-1 (Fig. 
S3). For the fast growing cells the D period is set to 25 minutes (see below) and the 
growth rate to 0.023 min-1 (Fig. S5). 
 





Efficiency in acquisition of cell cycles  

The number of cell cycles acquired (Fig. S6) is a linear expansion after a lag time 
corresponding to about a generation time. We fitted the model y t( ) = H t − t0( ) ⋅ k ⋅ t − t0( )  
to the data. Here, H is the Heaviside function, k is the accumulation rate per number 
of micro-colonies monitored in parallel and t0 is the lag time. For the fast growing 
cells, k=3.18 ± 0.0008 min-1(95% confidence interval), t0 = 42.8 ±0.11 min (95% 
confidence interval). For the slow growing cells k = 1.418 ± 0.0027 min-1 (95% 
confidence interval), t0 = 108.8 ± 0.64 min (95% confidence interval). The expected 
maximum number of acquired cell cycles is estimated as 
y t( ) = H t − t0( ) ⋅ kmax ⋅ncolony ⋅ t − t0( )  where kmax is the measured division rate per cell 
(0.0214 min-1 for fast growth and 0.0089 min-1 for slow growth), ncolony is the 
estimated maximum number of cells per colony (220 for fast growth and 325 for slow 
growth, estimated by comparing the micro-colony area to the area of an average 
imaged cell). The maximum rate of cells completing their respective cell cycles is 
expected to be 5.12 and 2.35 cell cycles per minute for fast and slow growing cells 
respectively. This implies an acquisition of ~60% of the maximum number of cell 
cycles available. 

Characterization of cell growth 
Growth and Morphology 

As E. coli cells are rod shaped, the cell volume and mass is expected to expand 
proportionally to cell length as the variation between cells in width was small (Fig. 
S3) and therefore, the cell volume can be represented by cell length. During 
conditions of exponential growth the length evolves as L(t-tB)=LB·exp(µ·(t-tB)),where 
LB is the length at birth and tB is the time of division. We found that cell length 
expansion during a cell life cycle under the conditions studied here was well 
described by an exponential function of time (Fig. S7). The exponential growth rate 
constant did not vary significantly between micro-colonies (Fig. S8) or over the 
course of the acquisition (Fig. S9), neither cycle times (Fig. S8). We find that siblings 
in general have more of the growth characteristics in common than mothers and 
daughters for both slow and fast growth (Fig. S10).  
 
  



Figures 

 
Figure S1: Flow chart of the cell segmentation and tracking algorithm.  
  



 
Figure S2: Grid of feature measures overlayed on phase contrast image. 
 
 
 
 
 
 
 

 
Figure S3: Growth characteristics. (A) Cell width average over cell cycle. (B) Cell length 
average. (C) Birth length. (D) Division length. (E) Cycle time. (F) Growth rate.  Number of 
observed cases are 15190, 4091 for fast and slow growth respectively. 
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Figure S9: Growth characteristics during an experiment. Each cell cycle contributes with the 
observed value for the time points within the cycle. The standard deviations from the mean 
are shown as dashed black lines and standard errors of the mean are shown as black solid 
lines. Number of observed cases are 15190, 4091 for fast and slow growth respectively. 
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