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There is a revolution occurring in the biological sciences. It took
off just a couple of years ago and is now clearly visible in the
literature. Some scientists in the field like to refer to the devel-
opment as the birth of systems biology, whereas others prefer not
to put a label on what is happening.

Modern molecular biology was born with the discovery that
genetics is based on nucleic acid chemistry (Watson and Crick
1953), and one way to define it is to say that molecular biology
is a large box of tools to do genetics by manipulating DNA. This
definition may sound disheartening, but its positive side is that
the tools can be applied to all aspects of biology to solve essen-
tially all scientific problems that may arise.

One result of molecular biology is large-scale sequencing of
genomes from a rapidly growing number of organisms. Genome
sequencing is not possible without the use of computers with
large memory and tools to handle the enormous amounts of data
that are generated in the massive sequencing efforts. The need for
data handling led to another box of tools, called bioinformatics,
which is now an established part of molecular biology. However,
when all this sequence data got into computers, it became obvi-
ous that the genetic blueprints by themselves tell us very little
about the functional behavior of cells and multicellular organ-
isms; that is, about what we really want to know about biological
systems. In this way, the human genome project, which is per-
haps the most spectacular success of molecular biology, also
meant that a vast space of future research of a radically different
kind became visible. To understand the causal connections be-
tween genotype and phenotype will require a very significant
expansion of the traditional toolbox used by molecular biolo-
gists. It must include concepts and techniques from many other
scientific disciplines such as physics, mathematics, numerical
analysis, stochastic processes, and control theory. Many novel
tools that do not exist today must be forged to understand how
dynamic, adapting, and developing systems can emerge from the
information buried in the genomes.

The development of such an extended toolbox for quanti-
tative reasoning about the dynamics of living systems, and the
application of its contents to solve a variety of scientific prob-
lems, is one way to define systems biology, analogous to our
definition of molecular biology above. It is our belief that systems
biology will enrich the biological sciences and transform our
thinking about biological problems, in analogy with what has
been happening in molecular biology during the 50 years that
have passed since the discovery of the double helix. Systems bi-
ology will always bring the functional aspects into focus, some-
times close to genomics and sometimes far out in areas not vis-
ited before. Below will follow some examples of what we consider
significant developments of systems biology, which is still in its
infancy but has great future promise. The selection of topics is
limited by the format of this mini-review, and many important
contributions could therefore not be covered.
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Models of Growing Bacteria

One question that has been with us for a long time is whether
bacteria have evolved to maximize their growth rate (Ehrenberg
and Kurland 1984), and in its simplest form, it refers to logarith-
mically growing cells in media containing different types of car-
bon sources. It is now possible to use genomic information to
reconstruct the metabolic pathways in whole cells (Edwards et al.
2001; Forster et al. 2003). The freedom of choices of pathways
can be reduced by in silico models of metabolic flows, in which
physical and other constraints are introduced to decrease the
number of degrees of freedom. Interestingly, the growth rate of
bacterial cells is accounted for in such in silico models and can be
maximized by simple linear optimization techniques (Ibarra et al.
2002) and then compared with the growth rate of real bacteria. It
turns out the Escherichia coli bacteria grow with maximal rate
according to the prediction of its in silico model in media con-
taining a number of common carbon sources. In contrast, when
the carbon source is glycerol, the growth is much slower than
that in the optimized in silico model. When, however, the cells
are allowed to grow in the presence of glycerol for a large number
of generations, they reproducibly evolve toward a maximal
growth rate, as predicted by the optimized in silico model. In this
case, the step from the annotated genome sequence of E. coli to
predictions about how fast the organism can grow is amazingly
short. Because rapid growth correlates positively with the popu-
lation genetic fitness parameter, it is now possible to make in
silico simulations of the evolution of bacteria that lead to pre-
dictions that are experimentally testable.

Another case, in which an analysis of metabolic flows in
growing bacteria leads to a number of interesting testable predic-
tions, concerns amino acid limitation. In all organisms, many
amino acids are encoded by several synonymous code words
(Crick et al. 1961), and these are often read by several tRNA
isoacceptors (Bjork 1996). When such an amino acid becomes
rate-limiting for protein synthesis in the cell, the charged levels
of the members of a family of isaoaccepting tRNAs will react very
differently to the deficiency. One tRNA, or a few tRNAs, will
totally lose its charging with amino acid, whereas others can
remain almost fully charged even when the rate of supply of the
amino acid becomes negligible (EIf et al. 2003). This result, fol-
lowing from a very simple model, has been used to rationalize
the choice of synonymous codons in control systems for tran-
scriptional regulation (attenuation of transcription; Yanofsky
1981), as well as in genes encoding enzymes that synthesize
amino acids. These results also indicate that the codon adaption
index (CAI) for highly expressed genes (Sharp and Li 1987)
should be complemented with a starvation CAI (sCAI) for gene
expression during amino acid limitation.

Functional Motifs in Transcriptional Networks

Genome sequences can also be used to identify common motifs
in networks for transcriptional regulation. Searches for such mo-
tifs in E. coli (Shen-Orr et al. 2002) and Saccharomyces cerevisiae
(Lee et al. 2002; Maslov and Sneppen 2002) have revealed a num-
ber of recurrent motifs, and for some, their functional role can be
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inferred. One example is a feed-forward coherent loop, and ki-
netic analysis reveals that this motif produces a significant out-
put signal when the input signal lasts a sufficiently long time but
not when the input is a short transient. Identification of such
motifs that occur with frequencies much higher than in random
networks, and understanding their functions, will become an
important tool for identifying ubiquitous control units in cells.

Unifying Principles in Biological and Engineered Systems
Another interesting development in systems biology is the rec-
ognition that the way organisms are designed may be very simi-
lar to how man-made machines are constructed, as the result of
many generations of trials and errors (Csete and Doyle 2002). The
insight that robustness, that is, the stability of system perfor-
mance to perturbations in machine parameters or to variation in
external conditions, is important not only for engineered objects
but also for organisms has proved particularly fruitful.

One example regards bacterial chemotaxis, in which Barkai
and Leibler (1997) suggested a simple and yet apparently realistic
feedback system that allows the cells to retain full sensitivity to
relative gradients in repellents or attractants, although the abso-
lute concentrations of these compounds may vary by orders of
magnitude. They also showed that this property of their mod-
elled chemotactic control system was robust to any changes in
enzyme concentrations and other intracellular parameters. They
suggested that robustness is expected to be a universal design
principle among many intracellular control systems.

This insight was applied to attempts at modeling the em-
bryonic pattern formation in Drosophila melanogaster (Eldar et al.
2002). A huge set of theoretical models, all compatible with ex-
isting experimental data on morphogen gradient patterns in the
Drosophila dorsal region, were characterized with respect to ro-
bustness. The analysis revealed that only a small subset of models
were robust, and that all these robust models shared the same
molecular mechanism. The existence of this particular mecha-
nism in Drosophila was subsequently verified by experiments.

This result corroborates the suggestion that robustness is a
universal organizing principle in the design of organisms, and
shows how a criterion of robustness can be used to effectively
eliminate false models. Even the discovery of just a few such
universal principles could be the starting point for a systems
biology that reaches far beyond the modeling of particular in-
stances.

Engineering of Genetic Networks

The engineering aspect of systems biology is further emphasized
by a number of recent attempts at building gene circuits with
desired properties, just as one builds electronic circuits for vari-
ous purposes.

These engineered gene circuits have been used to test math-
ematically formulated hypotheses about dynamics and regula-
tion of small genetic networks. The engineered systems are plas-
mid-born or chromosomally integrated by using homologous re-
combination (Court et al. 2002). One rationale for studying
engineered, rather than natural, systems is to prevent the com-
plexity of an unknown cell physiology to obscure the outcome of
experiments. Understanding properties of the components (pro-
moters, repressors, reporters, etc.) and their interaction in the
engineered systems will give clues to design principles used also
in natural systems. Engineered gene circuits have been designed
to toggle between stationary states (Gardner et al. 2000), to os-
cillate (Elowitz and Leibler 2000), or to behave as logical gates
(Guet et al. 2002). Starting from the principle of regulated re-
cruitment of RNA polymerase to different promoters (Ptashne
and Gann 2001), Buchler et al. (2003) have developed quantita-
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tive models, which can be used to guide the design of small
cis-regulatory networks.

In the study by Guet et al. (2002), combinatorial design
using three well-characterized transcriptional regulators and five
of their promoters made it possible to construct a large variety of
three-gene networks. In response to different combinations of
the inducers of the regulators, the network implemented differ-
ent logical gates. An additional interesting but subversive obser-
vation in this study was that networks with the same connectiv-
ity, that is, expected to behave similarly, could display different
response patterns. This means that even in very simple logical
circuits that are carefully designed, the phenotype can often not
be predicted, emphasizing the formidable problems that lie
ahead to understand naturally occurring global intracellular net-
works. Kim and Tidor (2003) have used mathematical modeling
to explain how networks with apparently identical architecture,
as used by Guet et al. (2002), can implement different logical
functions.

The Stochastic Nature of Intracellular Networks

The stochastic nature of all chemical reactions necessarily leads
to random fluctuations in intracellular molecule copy numbers.
Careful characterization of fluctuations in biological systems is
often required to understand their modes of operation. This is
intuitively obvious when the molecule copy numbers are low, as
for messenger RNAs in gene expression (Berg 1978). Artificial
systems for gene expression have been engineered with the pur-
pose of studying how chemical noise affects their performance
(Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al. 2003) and
how noise can be attenuated by feedback inhibition (Becskei and
Serrano 2000). It is often assumed that the expected size of fluc-
tuations (i.e., the standard deviation from the mean) is equal to
the square root of the number of molecules of a particular kind in
the system (Schrodinger 1944). However, this intuition is based
on equilibrium thermodynamics (van Kampen 1992), and be-
cause chemical reactions in the living cell often occur far from
equilibrium and frequently have strongly nonlinear kinetics,
fluctuations can both be much larger and much smaller than the
square root of the average number of molecules. A rapid method
to estimate the size of fluctuations in intracellular networks of
any kind has been presented by Elf and Ehrenberg (2003).

The power of mathematical modeling that takes stochastic
aspects into account was demonstrated by the analysis of cell
cycle control in fission yeast (Sveiczer et al. 2001) and studies of
the control of plasmid copy number in bacteria (Paulsson and
Ehrenberg 2001). In the first of these studies, the molecular basis
of cell size control was identified, and it was argued that the
cell-cycle time is regulated by the concentration, rather than by
the amount, of the activator (Cdc2/cyclin) in the cytoplasm.
Noise in gene expression affects the stability and robustness of
states of stable gene expression, and quantitative descriptions of
this phenomenon have been made for the paradigmatic example
of \ phage lysogeny (Aurell and Sneppen 2002).

Massively Parallel Experiments Reveal the Organization
of Genetic Networks

It is now possible to follow changes in the expression from a vast
number of genes in an organism at the transcriptional level with
microarray techniques (Lander 1999), and at the protein level
with two-dimensional gels or mass spectrometry with isotope
labeling (Gygi et al. 1999). Changes in metabolite pools can also
be followed in a massively parallel fashion (Raamsdonk et al.
2001), and with the increasing knowledge of protein—protein in-
teractions (Uetz et al. 2000), global analysis of genetic intracel-
lular networks is becoming feasible.
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One example of the power of these new experimental tech-
niques is work on Caulobacter crescentus (Laub et al. 2000), in
which microarray analysis identified differential transcriptional
regulation as a crucial mechanism for cell-cycle control and re-
vealed a hierarchical pattern of control in which a few proteins
steer the transcriptional pattern of a large number of genes
downstream in the cell cycle. In this case, the microarray obser-
vations fell into the fertile soil of extensive genetic work over
many years and an in-depth knowledge of the physiology of this
organism.

Another example comes from work by Ideker et al. (2001).
They used microarrays and mass spectrometry to analyze the
responses of messenger RNA and protein levels, respectively, to
systematic perturbations of expression from the genes in the ga-
lactose utilization pathway in the yeast S. cerevisiae.

Pitfalls of Reverse Engineering of Genetic Networks
Although massively parallel experimental detection of tran-
scripts, proteins, and metabolites in combination with knowl-
edge of protein—protein interactions allow effective discrimina-
tion against erroneous models of biological networks, these
methods do not generally allow unique reconstructions of exist-
ing networks through reverse engineering. Statistical techniques,
such as cluster analysis, have been used to demonstrate that cur-
rently available experimental data on gene expression levels are
generally not enough to reconstruct the network structure of
pathways and regulatory networks. Major challenges for reverse
engineering are therefore to develop optimal strategies for the
design of perturbation experiments (Tegner et al. 2003; Zak et al.
2003), to devise statistical methods to estimate the confidence of
model choices and parameter estimates (Moles et al. 2003), and
to put models obtained by reverse engineering to critical tests
with data from living systems.

An alternative approach is to integrate different types of
data, for example, expression and sequence data. Binding sites of
transcription factor can be recognized in sequence signatures (see
Djordjevic et al. 2003), and their differential number counts, up-
stream of proximate genes, give more information on which to
base reconstruction efforts. Work in this direction has been done
in yeast (Bussemaker et al. 2001). Very likely, we will see more
large-scale data fusion of this kind. Successful integration of data
from multiple sources (e.g., protein—-protein, protein-DNA, se-
quence, and metabolite data) requires the development of new
optimized software for data management and fusion. One ex-
ample of such a development has been given by Shannon et al.
(2003); another approach to the same problem, specifically
aimed at T-cell maturation, by Elfroni et al. (2003).

Conclusions

Systems biology is here to stay. It has left its lag phase behind,
and we are now witnessing how a new scientific discipline allows
an ever-increasing number of biological problems to be ap-
proached and solved with new techniques and theoretical con-
cepts that unify hitherto separate areas of biology. The methods
and concepts of systems biology will not only expand into all
areas of the biological sciences; its results are bound to have
repercussions in and inspire other sciences such as physics, en-
gineering, mathematics, and social sciences.
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