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ABSTRACT

We combine stroboscopic laser excitation with stochastic photoactivation and super-resolution
fluorescence imaging. This makes it possible to record hundreds of diffusion trajectories of small
protein molecules in single bacterial cells with millisecond time resolution and sub-diffraction
limited spatial precision. We conclude that the small protein mEos2 exhibits normal diffusion
in the bacterial cytoplasm with a diffusion coefficient of 13.1 + 1.2 um? s~1. This investigation lays
the groundwork for studying single-molecule binding and dissociation events for a wide range of

intracellular processes.
INTRODUCTION

Our intuitive grasp of the molecular mechanisms of life is centered around the behavior of
an individual molecule: we perceive its static structure from crystallographic models, we
envision its dynamic nature and we outline kinetic schemes that show how it interacts with
other molecules. However, we almost never observe this molecule directly, and our mental
construction of it is mainly an inference from experiments performed with Avogadro
numbers of molecules. Technological advances have made biological investigations of
single-molecule interactions possible (van Oijen, 2008). From individual trajectories we
can extract additional information such as dynamic or static intrinsic heterogeneity, since it
is not hidden by ensemble averaging, and thus intermediate states are readily revealed (Lu
et al., 1998, Zhuang et al., 2002, English et al, 2006). However, the vast majority of these

experiments are only conducted in test tubes, not in living cells.



What kind of data is needed for a direct assessment of biochemical interactions in vivo? The
criteria are defined by the spatial and temporal characteristics of the biological system.
Sub-diffraction limited spatial resolution (in the nanometer range) is necessary for an
adequate structural description, and high time resolution (in the millisecond range)
combined with high temporal dynamic range (spanning milliseconds to seconds) is needed

for an adequate temporal analysis.

Here we introduce an in vivo single-molecule assay that meets all these criteria by
combining recent advances in single-molecule imaging and tracking. The single-molecule
tracking approach readily meets the requirement for sub-diffraction limited spatial
resolution (Deich et al, 2004, Schmidt et al, 1996). While current imaging technology
allows for observation of slow processes, it potentially biases the observed distribution
towards slower subpopulations. In the worst case scenario, fast millisecond dynamics may
be completely overlooked. We circumvent this limitation by combining this imaging
technique with a technique borrowed from high-speed photography: stroboscopic

illumination (Yu et al, 2006, Elf et al., 2007).

Our fluorescent probe is the green-to-red photoconvertible GFP variant mEos2 (McKinney
et al, 2009) which we stochastically convert to re-spawn single fluorophores. mEos2
expands our biological observation window to high copy targets since we can control the
number of bright re-spawned molecules via tunable activation pulses (Betzig et al., 2006,

Rust et al., 2006).

To test the validity of our method, we have chosen the hardest biological target to track, a
small 26-kDa protein molecule. In doing so we lay the groundwork for investigations of all
larger and thus slower biological systems. Single-molecule tracking of small protein
molecules has scientific value per se: the nature of how they diffuse in the crowded
bacterial cytoplasm is a matter of debate for decades already, and a variety of diffusion and
sub-diffusion models have been put forward (Dix & Verkman, 2008, Magdziarz et al., 2009).
Sub-diffusion has been observed for large complexes in the bacterial cytoplasm (Golding &

Cox, 2006) as well as for molecules in cell membranes (Ghosh & Webb, 1994). If the



movement of small protein molecules in the cytoplasm were also sub-diffusive it would

profoundly affect the validity of test-tube experiments as in vivo models.

We record hundreds of trajectories per cell, which allows for accurate determination of
local apparent diffusion coefficients throughout the cell. By analyzing this extensive dataset
and by taking into account confinement effects we establish that small protein molecules

exhibit normal diffusion in the bacterial cytoplasm at least down to the 4-ms timescale.
MATERIALS AND METHODS
LASER MICROSCOPY

The optical setup is shown schematically in Figure 1a. An acousto-optical modulator (AOM,
IntraAction, 40 MHz) shutters a wide-field yellow excitation laser beam into an Olympus
[X81 inverted microscope. This 555-nm DPSS laser (CrystaLaser) is collimated by an
Olympus TIRF objective (NA = 1.45) and excites an area with a 2-um radius at the sample
plane with a laser power of 50 to 200 kWcm™2. The AOM is synchronized with a
PhotonMax EMCCD camera (Princeton Instruments) by a NI-DAQ M-series data acquisition
card (PCI-6259, National Instruments), and is controlled via LabVIEW 8.5 to pass short 0.4-
or 1-ms excitation pulses in the middle of each imaging frame. A photoactivation laser
beam at 405 nm (Radius, Coherent) is spatially overlapped using a long-pass dichroic filter
(Z405RDC, Chroma), and is focused at the sample plane. The photoactivation laser is
independently shuttered using a UNIBLITZ T132 shutter controller that delivers 3-ms
activation pulses at regular time intervals at powers ranging from 0.1 kWcm™2 to 40
MWcm~2. A long-pass dichroic filter (Z555RDC, Chroma) is used to excite the cells with
both the excitation and photoactivation lasers and also to separate the emission light. E. coli
cells (MG1655) expressing the monomeric fluorescent protein mEos2 (McKinney et al,
2009) from a plasmid derived from the pDendra2-B vector (Evrogen) are imaged on a M9-

glucose agarose pad in a FCS2 flow chamber (Bioptechs).

The duration of the excitation pulse is a critical parameter for obtaining distinct
fluorescence spots from the rapidly moving single molecules. The optimal value is a

tradeoff between collecting the large numbers of photons needed to determine the position



of the molecule accurately and the broadening of the spot due to diffusion of the molecule
during the excitation pulse. The optimal value under our experimental conditions was

determined to be in the range of 0.4 to 1 ms.

We can convert the photoactivation laser from wide-field excitation to confocal excitation
mode via a flip-lens (see Figure 1a). This allows us to record reverse fluorescence recovery
after photobleaching (reverse FRAP) or photoactivation (PA) ensemble data to

complement our single-molecule analysis for the same individual E. coli cells (see Results).

Individual E. coli cells are imaged for 20000 to 60000 frames at 250 Hz using up to 28 pixel
lines on a PhotonMax EMCCD camera. The photoactivation frequency and laser power are
adjusted for each cell to have on average less than one fluorophore visible at any given
time. Example frames are shown in Figure 1b. The time-lapse movies are then edited by
hand to remove frames with photoactivation pulses and frames where we observe multiple

molecules in one frame.
ANALYSIS AND SIMULATIONS

We track the fluorophores in our hand-edited movies using the particle tracking software
Diatrack (v3.03, Semasopht), which identifies and fits the intensity spots of our fluorescent
particles with symmetric 2D Gaussian functions (Figure 1b). In Figure 1c we show two
experimental trajectories of individual, freely diffusing mEos2 molecules in an individual E.

coli cell.

A standard analysis of a particles’s diffusion trajectory is the calculation of its mean square
displacements (MSDs, (Ax?)) at different time intervals. In a system without spatial
confinement, the MSD of a diffusing particle is proportional to time to the power of «, i.e.
(Ax?) « t%. «a is equal to unity for normal diffusion, larger than unity for super-diffusive
particles and less than unity in the sub-diffusion case. While the interpretation of MSDs are
straightforward for freely diffusing molecules, e.g. in the test-tube scenario, confinement
effects by the geometry of the cell must be considered in vivo. Hence the experimental
analysis must be complemented by simulations of diffusion in the given geometry of each

cell (Deich et al, 2004, Niu & Yu, 2008), and in our analysis we follow suit (see below).



Another standard approach is to calculate the cumulative distribution functions (CDFs) of
displacements. This approach is a straightforward way to obtain apparent diffusion
coefficients by fitting them to an exponential function corresponding to 2D Brownian

motion (see Figure 3a) (Schutz et al,, 1997, Vrljic et al., 2002).

We implement both approaches. All routines for trajectory analyses are written in IGOR
Pro 6.12A. For each of the analyzed cells all trajectories are first overlaid to determine the
precise cellular geometry. This geometry is then approximated as a cylinder with two
hemispherical end caps. The final geometry of the cell is determined by subtracting twice
the standard deviation of the estimated fitting noise (40 nm) from all sides of the initial
geometry of the cell. This corrects for apparent cell broadening due to the experimental
fitting noise. Only points that are inside the new geometry are included in the analysis. All
experimentally obtained trajectories containing more than three entries are kept and their

coordinates are transformed such that the cell’s long axis is aligned with the x-axis.

MSDs along both axes (Figure 3b) and MSDs along the long axis of the cell (Figure 4a and b)
are calculated for all possible time intervals. Standard errors of the means (SEMs) are
calculated from the standard deviations of the square displacements and the number of

contributing trajectories.

Since we collect hundreds of trajectories, diffusing molecules sample the entire cell. This
allows us to calculate the geometry of the cytosol by compensating for the experimental
fitting error, which increases the observed volume of the cell. The local apparent diffusion
coefficients displayed in Figure 5a and b are evaluated every 20 by 20 nm in an x-y grid.
The apparent diffusion coefficient assigned to a point in the grid is calculated from the
mean square displacement along the long axis of the cell at 4, 8, 12 and 16 ms for all

displacements originating within a radius of 200 nm from this point.

Simulations are performed to determine whether our trajectories can be well described by
normal diffusion. The simulations consist of 3D random walks sampled at the 10-ps
timescale in cells with the experimentally obtained geometries. The starting points of the

trajectories are sampled from a uniform distribution. The positions of the points of the



trajectories are calculated by averaging the positions of the corresponding points during

the experimental exposure times.

The trajectory lengths are determined probabilistically. Each trajectory is terminated with
a probability 1 — kp(x) every simulated frame (4 ms), where p(x) is the probability density
function to find a molecule at position x along the long axis. p(x) is determined from the
distribution of starting points of the experimentally observed trajectories. p(x) is included
in the termination condition to correct for any unevenness in the illumination of the cell. k
is a scale factor chosen such that the average number of frames in a trajectory is

approximately equal for experimental and simulated trajectories.

We add two types of noise to the simulated trajectories. First we add Gaussian-distributed

movement noise. The standard deviation of this noise is given by
0% = 2D, (1)

where D is the diffusion coefficient and 7 is the exposure time. This is to account for the
uncertainty in the position of the molecule, which arises from the movement of the
molecule during the exposure time. The movement noise is re-sampled for each point until
the point is inside the geometry of the cell. We then add Gaussian-distributed fitting noise,
which arises from the limited number of photons that are detected from the molecule

during the exposure time.

We obtain 95% confidence intervals for the MSD plots in Figure 4a and b by calculating and
sorting MSDs for 1000 simulations with the same number of trajectories as in the

experiments.

To analyze the photoactivation experiments, the experimental data is first averaged over
four consecutive photoactivation events each encompassing 30 frames taken over 120 ms.
The pre-activation background is subtracted from each frame and the experimental
intensities are projected on the long axis of the cell resulting in the experimental intensity
distribution. The fluorescence intensity is modeled by the 1D diffusion equation with
reflecting boundaries. The equation is integrated from the initial condition given by the

fluorescence intensity distribution in the first camera frame after photoactivation. The



diffusion coefficient is optimized such that the model error is minimized. Here photo-
bleaching in the experimental data is corrected for by a correcting factor. The error norm is
only minimized over the central part of the cell, since the polar regions have a

disproportionally small intensity when projected to 1D.
RESULTS

We have obtained experimental diffusion trajectories from eight individual E. coli cells on
MO9-based agarose pads at room temperature. In Figure 2a, we show all 1354 analyzed
trajectories obtained from one of these cells. We use stroboscopic illumination to localize
the fluorescence spots of freely diffusing protein molecules. Our stroboscopic illumination
time is 400 ps for two cells and 1 ms for the remaining cells. Our fitting precision is
proportional to the square root of the number of detected photons (Thompson et al., 2002).
While we could easily freeze any movement within a diffraction-limited spot using pulses
shorter than 200 ps, precise localization is not possible given the poor photo-physical
properties of mEos2 and hence we image at higher illumination pulse durations. The
frames are recorded at the highest read-out speed of our EMCCD camera (4 ms for 28 pixel
lines). We can record at lower frame rates, but this makes consecutive positions nearly
uncorrelated and increases the risk of assigning molecules to wrong trajectories. Trajectory

lifetimes are exponentially distributed with an average of 5 frames (see Figure 2b).

We analyze our single-molecule diffusion trajectories by calculating CDFs of displacements
(Schutz et al., 1997, Vrljic et al., 2002) and MSDs (Deich et al, 2004, Niu & Yu, 2008) in the
x-y plane as depicted in Figure 3a and b, respectively. For all our eight cells, we observe
cell-averaged apparent diffusion coefficients of 8.1+ 1.0 um?s~! for CDFs and 8.9 +
0.9 um? s~! for MSDs (both are for 4-ms steps) (see Table 1). These apparent diffusion
coefficients, while being quite consistent among all cells analyzed, are not microscopic
diffusion coefficients. This is all the more apparent when the first two steps (4 and 8 ms) of
the MSDs are analyzed. Then we observe a much lower apparent diffusion coefficient of
4.0 + 1.0 um? s~1. A strong correlation between cell size and apparent diffusion coefficients
is further evidence that we are not observing microscopic diffusion coefficients (see Table

4).



It is clear that the microscopic diffusion coefficients have to be determined using another
method. Confinement effects are less severe along the long axis of cells. We therefore
construct MSDs along the long axis of cells to separate diffusion across cells in which our
molecules instantaneously interact with the cell wall from less confined diffusion along the

long axis.

In Figure 4a and b we show experimental MSDs along the long axis obtained from two
individual E. coli cells. Analysis along the long axis results in much larger apparent diffusion
coefficients as compared to analysis of trajectories in the x-y plane (see Table 1) as the
confinement effects are less severe along the long axis. However, since the coefficients are
still correlated with the size of the cells some confinement effects are still present (see
Table 2). To accurately account for these confinement effects and to obtain microscopic
diffusion coefficients (Dp.0), We simulate trajectories assuming normal diffusion in the
volumes defined by the geometries of the cells. As can be seen in Figure 4a and b, the
simulated confidence intervals perfectly describe our experimental data, which strongly
indicates that the small mEos2 protein indeed performs simple Brownian motion, i.e.
normal diffusion, at longer timescales than 4 ms. The same analysis was repeated for six
additional cells of varying cell sizes. The results are summarized in Table 3. Unlike the
apparent diffusion coefficients, D, does not vary with cell size, and a more uniform
Dpicro for all E. coli cells regardless of cell size is now apparent. The Pearson’s correlation
coefficient for correlation between cell length and D,,., shows statistical absence of

correlation (r = —0.02) (see Table 4).

Having established that our molecule displays normal diffusion in all of our analyzed cells,
we will now analyze the spatial distribution of apparent diffusion coefficients due to
geometric constraints within an individual cell. The large number of experimental
trajectories for each cell obtained with sub-diffraction limited resolution allows us to
dissect how the apparent diffusion coefficients change throughout the cell. Figure 5a
displays the spatial distribution of apparent diffusion coefficients along the long axis and
Figure 5b displays the distribution of apparent diffusion coefficients in the x-y plane for the
same cell as in Figure 4a. There appears to be a large variation in diffusion coefficients

across the cell. This variation is especially noticeable in the faster timescales. This variation



can be erroneously interpreted as variations in the intracellular viscosity. This non-
uniformity is fully described by confinement effects since identical patterns emerge when
we simulate normal diffusion within a uniform cell with the same number of trajectories as
obtained in the experiments (see Figure 5a and b, right panel). This corroborates that the
entire cytoplasm obeys normal diffusion. The large spatial variation in the apparent
diffusion coefficient is due to the geometry constraint and the fitting inaccuracy for each
point in the trajectories. The geometry makes apparent diffusion faster in the middle of the
cells where molecules can diffuse less restricted for 4 ms and slower in the quarter
positions where molecules have encountered the wall and returned, giving a lower

apparent diffusion coefficient.

We independently obtain microscopic diffusion coefficients from ensemble photoactivation
(PA) experiments performed on two of the previously analyzed cells (see Figure 6). When
we use PA to determine the diffusion coefficients of mEos2 under our experimental
conditions, our best estimate of D, is 11 pm? s~1. However, this estimate is dependent
on the assumed geometry of the individual cell as was noted already by Elowitz et al
(Elowitz et al, 1999). However, the main conceptual problem with ensemble PA
experiments is that one has to establish normal diffusion before one can obtain

microscopic diffusion coefficients at all.

Our analysis shows that the fluorescent proteins display normal diffusion in the cell at least
down to the 4-ms timescale. This implies that the small protein perceives the E. coli
cytoplasm very differently from the large RNA-protein complexes that previously have
been demonstrated to display sub-diffusion when tracked at the single-molecule level
(Golding & Cox, 2006). Despite the excellent agreement with a normal diffusion model at
the greater than 4-ms timescale, our MSD curves do not extrapolate to zero at time zero.
Instead we observe a pronounced offset of ~ 0.05 um?. At first glance this offset might be
attributed to sub-diffusive behavior at timescales faster than 4 ms. However, experimental
fitting noise can cause pseudo-sub-diffusive behavior as any experimental fitting error will
shift the MSD curves to higher values and therefore contribute to any offset (Thompson et

al,, 2002).



DISCUSSION

We present for the first time microscopic characterization of the diffusion process for a
small freely diffusing cytoplasmic protein molecule in individual growing cells at room
temperature under well-controlled physiological conditions. This is achieved by combining

stroboscopic illumination with photoactivation.

The photoactivation approach is much more controllable than fine-tuning of GFP induction,
which is non-linear in inducer concentration (Choi et al, 2008). Furthermore,
photoactivation can be modulated at much higher time resolution (milliseconds vs.
typically several hours due to slow maturation rates of current dyes) and photoactivation
pulses can be applied multiple times during the same experiment. This sequential
activation and tracking of individual fusion proteins has previously been used to
characterize slowly diffusing targets in bacterial cells (Biteen et al.,, 2008, Niu & Yu, 2008).
We now combine this approach with stroboscopic excitation, creating a setup which is

capable of following fast biological processes.

We contrast our method with traditional methods for studying diffusion in living cells.
Diffusion in individual cells has been successfully studied using ensembles of molecules
such as fluorescence recovery after photobleaching (FRAP) or photoactivation (PA)
(Elowitz et al., 1999, Mullineaux et al, 2006, Konopka et al, 2009) and fluorescence
correlation spectroscopy (FCS) (Edman et al., 1999, Magde et al.,, 1972).

In the case of FRAP or PA a large number of fluorescent molecules are bleached or
activated in a part of the cell and the spread of molecules into the dark areas are monitored
over time. Not only do such techniques require an abundance of fluorescent molecules,
limiting them to high copy number targets, they are also intrinsically limited in spatial
resolution by the diffraction limit that restricts the analysis to the coarsest length scales
found in bacteria. This coarseness fundamentally also limits temporal resolution in such

assays.

Figure 6 illustrates that it is possible to obtain accurate diffusion coefficients using a PA

assay on the same cells as were studied using our single-molecule assay. However, it should
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be pointed out that interpreting FRAP or PA data is highly geometry dependent which
could in the worst case scenario be misinterpreted as either cell to cell variability (due to

different geometries between cells) or spatial heterogeneity within one cell.

Here we explicitly simulate normal diffusion of photoconverted proteins along the long axis
of the cell given the cell's geometry, the photoactivation profile and the bleaching
characteristics. This allows us to reproduce the experimental PA data and hence we obtain
microscopic diffusion coefficients. One caveat is that normal diffusion has to be established
first by an independent method (as we have done) before this method can be used to
obtain such coefficients as this method would not readily reveal deviations from Brownian
motion. Also, such ensemble methods are much less sensitive to heterogeneity, be it static
(different populations) or dynamic (molecules switching between states, such as binding or
dissociation), and studies of intracellular binding kinetics with PA is therefore likely out of

reach.

Another well-established technique, FCS, has excellent temporal resolution but its temporal
dynamic range is restricted to narrow diffusion times through a diffraction-limited focal
volume. Furthermore, while FCS is a good choice for low abundant cytosolic biomolecules,

any slow kinetics may be misinterpreted as static heterogeneity.

Our method heavily relies on a very large data set, which we were able to obtain using
expression from high-copy number plasmids and by regenerating the fluorescence using
repeated photoactivation cycles. For an accurate determination of microscopic diffusion

coefficients hundreds of individual trajectories per cell are needed.

This may not be readily available for a chromosomally encoded GFP-tagged biological
target of choice. First, the copy number of the target may be much lower as the majority of
bacterial proteins are expressed at very low copy numbers (Xie et al., 2008). Second, the
photo-chemistry of GFP variants are both pH and redox sensitive (Bogdanov et al.,, 2009a,
Bogdanov et al, 2009b), thus limiting the number of observable molecules in vivo even
further. We have also observed much dimmer mEos2 fluorescence in the cytoplasm, and

were able to recover in vitro photo-physics by burning small holes into the cell membrane
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with the activation beam in a confocal configuration and at powers of 4 MWcm™2 (data not

shown).

If hundreds of trajectories per cell are not achievable, apparent diffusion coefficients are
still readily obtainable for only a few trajectories per cell from the CDFs and MSDs, even
without taking cell geometries into consideration. While in this case we are not able to
obtain microscopic diffusion coefficients anymore, nevertheless apparent diffusion
coefficients are still reproducible between cells and directly correspond to microscopic
diffusion coefficients for slow-moving molecules when the MSD is linear within the

millisecond time range.

In conclusion, we have demonstrated the possibility to characterize intracellular diffusion
at high temporal precision and spatial resolution by using single-protein tracking in the
cytoplasm of living bacterial cells. We have reliably tracked the protein mEos2 in the
cytosol, and we established that its diffusion characteristics are indistinguishable from
Brownian motion. This inherent intracellular inertness, coupled with a time resolution on
par with the fastest cellular protein diffusion dynamics, makes this method a general tool
for investigation of intracellular kinetics. This will make it possible to use genetic fusions to
mEos2 and similar GFP variants to study binding of our molecule of choice to its binding

partners where deviations from Brownian diffusion will be biologically interesting.

In the near future this presented methodology will be employed for studying single-

molecule binding and dissociation events in vivo for wide range of intracellular processes.
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TABLES

Table 1. Apparent diffusion coefficients along both axes of the cell (Dx_y).
Cell Exposure Frame Cell | Apparent Apparent Apparent
number time time length Dy.y Dy.y Dy.y

(CDF) (MSD, 4 ms) (MSD, 4 and 8 ms)

(ms) (ms) (pm) | (pm?s™") (um?s™!) (um? s™1)
1 0.4 4 1.7 7.7 8.6 3.2
2 0.4 4 2.6 9.1 10.1 55
3 1 4 2.2 7.8 9.1 3.5
4 1 4 2.0 6.9 7.9 3.9
5 1 4 3.0 9.8 10.3 5.1
6 1 4 1.8 8.2 8.9 3.2
7 1 4 2.5 7.7 8.5 4.7
8 1 4 1.9 7.2 8.0 2.7
Average 2.2 8.1 8.9 4.0
Standard 0.5 1.0 0.9 1.0
deviation

15



Table 2. Apparent diffusion coefficients along the long axis of the cell (D,).

Cell Exposure Frame Cell | Apparent  Apparent Apparent
number time time length D, D, Dy
(CDF) (MSD, 4 ms) (MSD, 4 and 8 ms)

(ms)  (ms) (um) | (um?s™) (um?s~1) (pm? s~)

1 0.4 4 1.7 7.9 13.2 5.1

2 0.4 4 2.6 10.5 15.6 9.9

3 1 4 2.2 10.7 14.8 6.2

4 1 4 2.0 13.2 12.7 7.0

5 1 4 3.0 13.8 15.3 9.1

6 1 4 1.8 8.3 12.9 5.1

7 1 4 2.5 17.2 12.6 8.0

8 1 4 1.9 7.1 11.3 4.5

Average 2.2 111 13.6 6.9

Standard 0.5 35 1.5 2.0

Deviation
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Table 3. Inferred microscopic diffusion coefficients (D ,icr0)- The microscopic diffusion
coefficients are in bold.

Cell Exposure time Frame time Cell length | Scale factor D nicro
number (ms) (ms) (um) for PDF (um? s
1 0.4 4 1.7 0.80 13
2 0.4 4 2.6 1.50 14
3 1 4 2.2 1.05 13
4 1 4 2.0 0.85 15.5
5 1 4 3.0 1.85 12.5
6 1 4 1.8 0.90 11.5
7 1 4 2.5 1.10 12.5
8 1 4 1.9 1.00 13
Average 2.2 13.1
Standard 0.5 1.2
deviation
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Table 4. Pearson’s correlation coefficients for diffusion coefficients and cell lengths.
The correlation coefficient for D, is in bold.

Dpicro Apparent Apparent Apparent Apparent Apparent Apparent
Dy Dy Dy D D D

X-y X-y X-y

Method (CDF) (MSD, 4 (MSD, 4 and (CDF) (MSD, 4 (MSD, 4 and
ms) 8 ms) ms) 8 ms)

Cell —0.02 0.66 0.67 0.89 0.76 0.75 0.88

length
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Figure 1a. Schematic diagram of the optical setup.
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Figure 1b. Nine consecutive frames of a single mEos2 trajectory tracking and a
Gaussian fit to frame 3.
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Figure 1c. Overlay of two experimentally obtained single-molecule mEos2
trajectories from an E. coli cell.
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Figure 2a. Overlay of all 1354 single-molecule trajectories for E. coli cell number 5
(see Table 1 and 2).
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Figure 2b. Histogram of the trajectory lifetimes for the 1354 analyzed trajectories
presented in Figure 2a.
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Figure 3a. Cumulative distribution function (CDF) of the displacements r along the x-

and y-axes of an E. coli cell. We obtain an apparent diffusion coefficient of 9.8 +

r2

0.1 um? s~ by fitting P(r, At) = 1 — e *Pawt (gold) to the experimental CDF (in red). The
CDF of simulated trajectories in the geometry of the cell is also shown (blue).

24



0.7

NE T _ T

32 0.6 — { T -

= T -

¢ 05 E }

5 E i ® te

C_(é 0.4 — § * ® *

s @

0 o

E 0.3 - ] 1 L

g 0.2 ¢ 4

g | e o

8 01—

S

0.0 I I I I I |
0 20 40 60 80 100 120

Time interval (ms)
Figure 3b. Mean square displacements (MSDs) along the x- and y-axes of an E. coli cell

for different time intervals. The error bars represent the experimental standard errors of
the means.
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Figure 4a. Mean square displacements (MSDs) along the long axis of E. coli cell 5 for
different time intervals. The error bars represent experimental standard errors of the
means. The 95% confidence intervals of simulated trajectories are displayed in blue for
normal diffusion at D = 12.5 pm? s™! in the volume defined by the geometry of this cell.
The simulations account for the effects of experimental fitting noise, the unevenness in the
excitation illumination, and the lifetime distribution of the experimental trajectories (see
Methods).
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Figure 4b. Mean square displacements (MSDs) along the long axis of E. coli cell 6 for

different time intervals. The error bars and confidence intervals were calculated as in
figure 4a for normal diffusion at D = 11.5 pm? s™1.
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Figure 5a. Local apparent diffusion coefficients along the long axis of E. coli cell 5.
Each point in the graph is false-colored according to the mean square displacement
calculated over 4, 8, 12 and 16 ms for experimental (left panel) and simulated (right panel)
displacements originating in a circle (r = 200 nm). The simulations assume normal
diffusion at D = 12.5 pm? s~ in the volume defined by the geometry of this cell.

The apparent diffusion coefficients are higher in the middle of the cell, as the molecules can
diffuse more freely along the long axis, especially at shorter timescales. We can also see in
both panels that noise contributions make the apparent diffusion faster close to the cell
wall.
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Figure 5b. Local apparent diffusion coefficients along both axes of E. coli cell 5. Each
point in the graph is false-colored according to the mean square displacement calculated
over 4, 8, 12 and 16 ms for experimental (left panel) and simulated (right panel)
displacements originating in a circle (r = 200 nm). The simulations assume normal
diffusion at D = 12.5 pm? s~ ! in the volume defined by the geometry of this cell.

As also seen in figure 53, there is good agreement between experimental and simulated
local apparent diffusion coefficients.
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Figure 6. Single-cell photoactivation ensemble experiments.

Left panel: A large number of mEos2 molecules are activated in a diffraction-limited region
at the interface of two E. coli cells at time zero. mEos2 spreads throughout the two cells
over a time period of 64 ms.

Right top: The experimental fluorescence intensity values from the central part of the left
cell are projected on the x-axis and plotted in the (x, t)-plane.

Right below: Solution of the 1D diffusion equation time-evolved with reflective boundaries
corresponding to the lengths of the cells. The diffusion coefficient D;.ro = 11 um? s™! was
obtained by fitting the experimental diffusion surface (right top).
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