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Abstract The master equation of chemical reactions
is solved by first approximating it by the Fokker–Planck
equation. Then this equation is discretized in the state
space and time by a finite volume method. The differ-
ence between the solution of the master equation and
the discretized Fokker–Planck equation is analyzed. The
solution of the Fokker–Planck equation is compared
to the solution of the master equation obtained with
Gillespie’s Stochastic Simulation Algorithm (SSA) for
problems of interest in the regulation of cell processes.
The time dependent and steady state solutions are com-
puted and for equal accuracy in the solutions, the
Fokker–Planck approach is more efficient than SSA for
low dimensional problems and high accuracy.
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1 Introduction

Biological cells are microscopical chemical reactors.
They control their internal state through a complex reg-
ulatory network of non-equilibrium chemical reactions.
The intracellular rules for chemistry is quite different
from the circumstances when the descriptions of ordi-
nary test tube chemistry applies. For one thing there
is an enormous number of different reactants but only
very few molecules of each kind. To gain understanding
of the principles that is used in cells to control essential
processes, it is therefore necessary to study drastically
simplified models.

The validity of some assumptions of macroscopic
kinetic modeling must be reinvestigated before they
can be safely applied to biochemical systems in vivo.
Sometimes the validity does not hold. In particular it
has been widely appreciated that stochastic models for
the dynamics of biochemical reactants are sometimes
necessary replacements for the standard reaction rate
equations which only apply strictly to mean values in
infinitely large, yet, well stirred systems [21,22].

The reaction rate equations will give an insufficient
description of biochemical systems because molecule
copy numbers are sometimes small [2,3,27], and because
the molecules have a hard time finding and leaving
each other due to slow intracellular diffusion [4,9]. Bio-
logical macromolecules may also have many internal
states which makes the individual reaction events more
interesting than interactions between ions in dilute
solutions [30].

The master equation is a scalar differential-difference
equation for the time evolution of the probability den-
sity function (PDF) of the copy numbers of the molecu-
lar species participating in the molecular system [13,22].
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This equation is an accurate model on the meso scale
of biochemical systems with small copy numbers. The
number of space dimensions in the equation is N, where
N is the number of different molecular species. When
N is large, numerical solution of the master equation
suffers from the “curse of dimensionality”. Suppose that
the computational space is restricted to Mm points in
every dimension. The computational work and memory
requirements are then proportional to MN

m, an exponen-
tial growth in N.

Gillespie has developed the Stochastic Simulation
Algorithm (SSA), which is a Monte Carlo method for
simulation of the trajectories of the molecular system
in time [16]. By collecting statistics from the simulation,
the PDF of the copy numbers is obtained approximately.
The work grows linearly with N, making it possible to
use this method also for large N. This method is the
standard method for stochastic simulation of reaction
networks in cells. A disadvantage is that many trajecto-
ries are needed for an accurate estimation of the time-
dependent solution of the master equation and only long
time-integrations yield accurate results for its steady
state solution.

The master equation is approximated by a discret-
ization of the Fokker–Planck equation (FPE) [13,22]
on a Cartesian grid in this paper. The FPE is a time-
dependent partial differential equation and it is discret-
ized with a finite volume scheme as in [11]. The “curse
of dimensionality” is an obstacle also for the numerical
solution of the FPE but the number of grid points can be
reduced dramatically compared to the master equation.
If the number of points is MFP in each dimension, then
MFP < Mm and MN

FP � MN
m. The difference between

the solutions of the master equation and the discretized
FPE is estimated by a maximum principle thanks to the
parabolic nature of the FPE. This difference is quanti-
fied in numerical experiments.

The solution of the FPE is computed with a certain
estimated accuracy and the solution of the master equa-
tion is determined by SSA with the same estimated
accuracy. Problems with two, three, and four species are
solved to different accuracies and the computing time
is compared between the methods. In two dimensions,
solution of the FPE is the preferred method, especially
for higher accuracy. In many dimensions, SSA is the
superior alternative. A theoretical support for this result
is derived.

The paper is organized as follows. In the next section,
the FPE is discretized in space and time. The PDF is
determined by the SSA in Sect. 3 and the number of
necessary realizations is discussed. The estimate of the
difference between the solutions of the master equation
and the discretized FPE is derived in Sect. 4. The FPE is

applied to four different molecular systems of biological
interest described in Sect. 5 and compared to simulations
with Gillespie’s algorithm in the last section. A vector is
denoted by x in bold and its j:th component by xj in the
sequel.

2 Deterministic solution of the Fokker–Planck
equation

The FPE is derived from the master equation in this
section following [22]. The FPE is then discretized in
space and integrated by an implicit time-stepping
scheme.

2.1 The FPE and its boundary conditions

Assume that we have a reaction with a transition from
state xr to state x. The vectors xr and x have N non-
negative integer components such that x, xr ∈ Z

N+ where
Z+ = {0, 1, 2, . . .}. Each reaction can be described by a
step nr and the probability flow from xr to x by the rate
wr(xr)

xr
wr(xr)−−−→ x, nr = xr − x. (1)

Let ∂t denote the time derivative ∂/∂t. The master
equation corresponding to R reactions satisfied by the
probability p to be in state x at time t is

�m(p) ≡ ∂tp(x, t) −

⎛
⎜⎜⎝

R∑
r = 1

(x + nr) ∈ Z
N+

qr(x + nr, t)

−
R∑

r = 1
(x − nr) ∈ Z

N+

qr(x, t)

⎞
⎟⎟⎠ = 0, (2)

where qr(x, t) = wr(x)p(x, t), see chapter 7.5 in [13].
A term is included in the first sum only if x + nr is a
possible state and in the second sum only if x can be
reached from a possible state by the reaction.

The FPE is derived from (2) by Taylor expansion
around x (the Kramers–Moyal expansion) and ignoring
terms of order three and higher, see [10,22]. Let x =
(x1, x2, . . . xN)T ∈ R

N+ = {x | xi ≥ 0, i = 1, . . . , N} and
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let ∂i denote the space derivative ∂/∂xi. Then we have

G(p) ≡ ∂tp(x, t) −
R∑

r=1

(
N∑

i=1

nri∂iqr(x, t)

+1
2

N∑
i=1

N∑
j=1

nrinrj∂i∂jqr(x, t)

⎞
⎠ = 0.

(3)

The FPE is written in conservation form by introduc-
ing Fr with the components

Fri = nri

(
qr + 1

2
nr · ∇qr

)
, r = 1, . . . , R, i = 1, . . . , N.

Then by (3)

∂tp(x, t) =
R∑

r=1

∇ · Fr. (4)

Integrate (4) over a computational cell ω with boundary
∂ω and boundary normal n̂ω and apply Gauss’ formula
to obtain

∂t

∫

ω

p(x, t) dω =
∫

ω

∂tp dω =
∫

ω

∇ ·
R∑

r=1

Fr dω

=
∫

∂ω

R∑
r=1

Fr · n̂ω ds. (5)

This is the basis for the finite volume discretization.
Assume that we are interested in the solution in a

multidimensional cube � ⊂ R
N+ with the boundary

∂� = ∪N
j=1∂�j, ∂�j = {x | xj = 0 ∨ xj = xj,max > 0}.

By letting F = ∑R
r=1 Fr and assuming reflecting bound-

ary conditions on ∂�, i.e. particles cannot leave the
region [13], we have that F j = 0 on ∂�j. It follows
from [11] that the total probability

P(t) =
∫

�

p(x, t) d�

is constant for t ≥ 0.

2.2 Space discretization

A Cartesian computational grid is generated so that in
2D the computational domain �h defined by [0, x1,max]×
[0, x2,max] is covered by the rectangular cells ωij, i =
1, . . . , M1, j = 1, . . . , M2, of length hx

i in the x-direc-
tion and hy

j in the y-direction and with midpoints at
xij = (xi, yj). At i = 1 we have x1j = (hx

1/2, yj) and
xi1 = (xi, hy

1/2) at j = 1. The rightmost midpoints xM1,j
and xi,M2 are chosen such that the solution p can be

approximated by zero at the outer boundary of �h at
(xM1 + hx

M1
/2, yj), j = 1, . . . , M2, and (xi, yM2 + hy

M2
/2),

i = 1, . . . , M1.
From (5) we have for the average pij of p in ωij with

area |ωij| = hx
i hy

j

∂tpij = 1
|ωij|

∫

∂ωij

F · n̂ω ds. (6)

For evaluation of the integral on ∂ωij, we need an approx-
imation of

F =
R∑

r=1

nr

(
qr + 1

2
nr · ∇qr

)
(7)

using the cell averages pij. With a centered approxima-
tion of

∑R
r=1 nriqr we have on the face (i+1/2, j) between

ωij and ωi+1,j

R∑
r=1

nriqr = 1
2
(wi+1,jpi+1,j + wijpij), (8)

where wij = ∑R
r=1 nriwr(xij).

A shifted dual cell ωi+1/2,j is introduced. The midpoint
of ωij is located on the left hand face of ωi+1/2,j and the
midpoint of ωi+1,j on the right hand face. The gradient
in the dual cell is computed using Gauss’ theorem

∇qi+1/2,j = 1
|ωi+1/2,j|

∫

ωi+1/2,j

∇q dω

= 1
|ωi+1/2,j|

∫

∂ωi+1/2,j

qn̂ωds. (9)

Then q is approximated at the right hand face of ωi+1/2,j
by qi+1,j, at the left hand face by qij, at the upper face by
(qi+1,j+1 +qi+1,j +qi,j+1 +qij)/4 and at the lower face by
(qi+1,j−1 + qi+1,j + qi,j−1 + qij)/4. The approximation on
the other cell faces of ωij follows the same idea. The flux
F in (7) can now be computed on all cell faces using (8)
and (9). The scheme is second order accurate on grids
with constant grid size.

The space discretization can be summarized in 2D by

dpij

dt
= (hx

i )
−1(F1,i+1/2,j − F1,i−1/2,j)

+(hy
j )

−1(F2,i,j+1/2 − F2,i,j−1/2),

i = 1, . . . , M1, j = 1, . . . , M2. (10)

Since at most two dimensions are involved in the deriv-
atives in (3), the generalization of (10) to more dimen-
sions than two is relatively straightforward.

After space discretization and with the vector p con-
taining the unknown cell averages of length M = ∏N

i=1
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Mi, the FPE approximation is

dp
dt

= Ap, (11)

where A ∈ R
M×M is a constant, very sparse matrix. It

is proved in [11] that A has one eigenvalue equal to
zero when the discretization is conservative as in (10).
When N grows, M increases exponentially fast. This is
the “curse of dimensionality” but the growth is slower
for the FPE with hi > 1 than for the master equation.

2.3 Time discretization

We are interested in computing the steady state solution
and the time dependent solution of (11).

The time integration is performed by the backward
differentiation formula of second order, BDF-2 [18].
This method is implicit and stable if the real part of the
eigenvalues λ(A) of A, 
λ(A), is non-positive. There
are different time scales in the dynamics of biological
systems [7] favoring a method suitable for stiff equa-
tions where the time step can be selected with only
the accuracy in mind. This is an advantage compared
to SSA where stiff problems are advanced with small
time steps determined by the fast time scale. Work is
in progress trying to remedy this inefficiency of SSA,
see e.g. [5,19].

Let the time step between tn−1 and tn be �tn. It is
chosen adaptively according to [25] such that the local
discretization error is smaller than a given tolerance ε.
Then the coefficients in the BDF scheme depend on the
present and the previous time steps [18,25]. The system
of linear equations to solve for pn at each time step is

(αn
0 I − �tnA)pn = −αn

1 pn−1 − αn
2 pn−2

θn = �tn/�tn−1

αn
0 = (1 + 2θn)/(1 + θn),

αn
1 = −(1 + θn),

αn
2 = (θn)2/(1 + θn),

(12)

where I ∈ R
M×M is the identity matrix.

The time-dependent solution pn in (12) is computed
by an iterative method in every time step. We have cho-
sen Bi-CGSTAB [29] with incomplete LU (ILU) pre-
conditioning of A [17] for rapid convergence. The steady
state solution p∞ of (11) satisfying

Ap∞ = 0 (13)

is determined by computing the eigenvector of A corre-
sponding to λ(A) = 0 with an Arnoldi method [24] or a
Jacobi–Davidson method [28] for sparse, nonsymmetric
matrices.

2.4 Error estimation

The error in the steady state solution of the FPE can
be estimated by computing the solution for the same
problem on a coarser grid and compare the two solu-
tions. Let the solution be ph of the FPE and p2h the
solution where the grid size is doubled in all dimensions.
The solution on the fine grid is restricted to the coarse
grid by the operator R2h by taking the mean value of ph
in the fine cells corresponding to each coarse cell. The
solution error eh in ph is then estimated for second order
discretizations by

eh = (R2hph − p2h)/3.

An additional error in the time-dependent problem
is due to the time discretization. The total solution error
eh,k in ph,k at t = T with �t = k is estimated by comput-
ing p2h,2k, the coarse grid solution computed in every
second time step of the fine grid solution. The estimate
of eh,k at T is

eh,k = (R2hph,k − p2h,2k)/3.

In N space dimensions, the computational work to
calculate p2h is reduced by a factor 2−N and to calculate
p2h,2k by 2−(N+1) compared to the work to determine ph
and ph,k. Hence, the cost of the error estimates is low
for the FPE.

The error is measured in the 
1-norm ‖ · ‖1 defined
as follows. Let ν = (ν1, . . . , νN) be a multi-index with
1 ≤ νj ≤ Mj and |ν| = ∑N

j=1 νj, and let ων be a cell in �h.
For a scalar grid function fν(t) we have

‖f(t)‖1 =
∑
ν

|ων | |fν(t)|. (14)

2.5 Work to solve the FPE

Suppose that h is the step length in each dimension, ε is
the error tolerance, and that the discretization error is
of order r. Then ε ∝ hr and the size M of the discretized
equation (11) satisfies M ∝ h−N . The number of non-
zero elements in the stencil at one grid point is at most
1 + 2N2. If the work for finding the zero eigenvalue and
its eigenvector is approximately proportional to M, the
work to compute the steady state solution is

W(ε) = Cs(N)ε− N
r , (15)

where Cs is independent of ε.
For the number of time steps K, we have K ∝ (�t)−1.

The work in each time step is proportional to M and
the error tolerance ε ∝ (�t)r for an r:th order time
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integrator. Thus, the total work is

W(ε) = Ct(N)ε− N+1
r , (16)

where Ct has the same property as Cs.
The memory requirements to store pn−1 and pn is

2M floating point numbers. Additional workspace in
Bi-CGSTAB and the eigensolvers proportional to γ M
is necessary. Here γ is 5 − 10.

The generation of the constant matrix A was imple-
mented in C++ and imported into MATLAB [26] for
time integration and computation of eigenpairs. The
adaptive time integrator was implemented in MATLAB.

3 Monte Carlo solution of the master equation

The master equation is solved by Gillespie’s algorithm
SSA [16]. The computational domain �h is partitioned
into the same cells as in Sect. 2. Since hi > 1, each cell
contains many states of the state vector x. The proba-
bility of the system to be in a cell is estimated from one
trajectory in the steady state case assuming ergodicity
and several trajectories in the time-dependent case. At
least M floating point numbers have to be stored for the
probabilities in the M cells.

3.1 Steady state problem

The SSA generates one trajectory of the chemical
system. The probability of the system to be in a cell
ν in a time interval �τ between τn−1 and τn is denoted
by Pn

ν . It is computed as the quotient between the frac-
tion of time �τn

ν spent by the trajectory in the states in
cell ν in the interval (τn−1, τn] and �τ

Pn
ν = �τn

ν /�τ .

After the transient, when the steady state solution is
approached, Pn

ν , n = ntr + 1, ntr + 2, . . . are considered
as a sequence of independent random variables in a sta-
tionary stochastic process. The average of Pn

ν between
ntr and ntr + �n, defined by

P
�n
ν = 1

�n

ntr+�n∑
n=ntr+1

Pn
ν , (17)

is normally distributed N (µν , σ 2
ν /�n) according to the

central limit theorem [23]. The standard deviation of
P

�n
ν depends on the standard deviation σν of Pn

ν . The
steady state solution determined by the stochastic algo-
rithm has an expected value µν corresponding to the
probability p∞

ν in (13) computed by the FPE.

3.2 Error estimation and computational work

The error in P
�n
ν in cell ν is eν = P

�n
ν − µν and can be

estimated by Student’s t distribution [23]. Let s2
ν be the

sample variance defined by

s2
ν = 1

m − 1

n0+m∑
n=n0+1

(Pn
ν − P

�n
ν )2,

for some n0. The sample standard deviation of Pn
ν is

computed using m = 100 samples in a separate simula-
tion of the system. Then we have with probability 0.68

−sν/
√

�n ≤ eν ≤ sν/
√

�n

and

‖e‖1 � ‖s‖1/
√

�n. (18)

A 95 % confidence interval would require a �n about
four times as large.

The length of �τ for a reliable sν depends on the prop-
erties of the system. If �τ is too small, the sampling will
be biased by the intitial state of the simulation and ‖σ‖1
will be underestimated. Numerical experiments are em-
ployed to determine a suitable �τ for each system by
computing ‖s‖1 for increasing �τ until the estimates
conform with what is expected from the central limit
theorem. The variance is itself a stochastic variable hav-
ing a χ2-distribution [23]. A 90% confidence interval for
σν with m = 100 is (0.896sν , 1.134sν).

With the error tolerance ε, the number of samples �n
of Pn

ν after the transient follows from (18)

�n ≈ (‖s‖1/ε)
2.

The total simulation time Tmax will then be

Tmax = �n�τ ≈ �τ(‖s‖1/ε)
2. (19)

The number of steps in SSA to reach Tmax is problem
dependent but is independent of ε. Compared to the
error estimation for the FPE, computing ‖s‖1 for SSA
is a relatively expensive operation, see the results in
Sect. 6.

The SSA was implemented in C for each model sys-
tem in Sect. 5 separately in order to avoid unneces-
sary efficiency losses associated with a more general
implementation.

3.3 The time-dependent problem

In order to compute the PDF pν(T) at time T, L different
trajectories are generated by SSA up to t = T. Partition
L into L0 intervals of length �λ, introduce the number
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of trajectories �λl
ν in the l:th interval in cell ν, and define

Pl
ν(T) = �λl

ν/�λ.

The result is a stochastic variable Pl
ν(T), l = 1, . . . , L0.

An increasing l corresponds to an increasing time for
the steady state problem. The average value

Pν(T) = 1
L0

L0∑
l=1

Pl
ν(T) (20)

is normally distributed N (µν(T), σ 2
ν (T)/L0), cf. (17).

The total number of necessary realizations for an error
eν(T) satisfying ‖e(T)‖1 ≈ ε is

L ≈ �λ(‖s‖1/ε)
2. (21)

where s is calculated as above. A suitable size of �λ is
problem dependent and is determined in the same way
as �τ . The total work is proportional to L and therefore
also to ε−2.

4 Comparison of the solutions

The solution of the master equation is compared to the
solution of the discretized FPE in this section and a
bound on the difference is derived.

For a sufficiently smooth p we have for the difference
between the FPE (3) and the master equation (2)

G(p) − �m(p) = τm(p). (22)

The remainder term τm consists of the truncated part of
the Taylor expansions in space when the FPE is formed
from the master equation. If p solves the FPE then
G(p) = 0 and

�m(p) = −τm(p).

A solution p̂m of the master equation defined at
x ∈ Z

N+ is extended by a smooth reconstruction pm to
x ∈ R

N+ , e.g. by a polynomial approximation. Then we
have p̂m(x) = pm(x) for x ∈ Z

N+ so that

G(pm) = τm(pm) + �m(pm), (23)

and at the non-negative integer points �m(pm) = 0.
In the same manner, let p̂FP be the solution of the

discretized FPE according to (12) so that �FP(p̂FP) = 0
at tn, n = 0, 1, . . . , and at e.g. the midpoints of the cells.
Extend p̂FP smoothly to pFP defined for t > 0, x ∈ R

N+ .
The difference between G and �FP for a sufficiently
smooth p is

G(p) − �FP(p) = τFP(p), (24)

where τFP is the discretization or truncation error when
G is approximated by �FP. If p solves the FPE, then

we have

�FP(p) = −τFP(p).

For pFP we have

G(pFP) = τFP(pFP) + �FP(pFP), (25)

and at the midpoints �FP(pFP) = 0. Since G is linear in
p in (3) we can subtract (23) from (25) to obtain

G(pFP − pm) = G(pFP) − G(pm) = ε(pFP, pm),

ε(pFP, pm) = τFP(pFP) − τm(pm)

+�FP(pFP) − �m(pm). (26)

The difference δp between the reconstructed solutions
pFP and pm of the master equation and the discretized
FPE satisfies a FPE with a small driving right hand side
ε. The right hand side can be estimated by higher deriva-
tives of pFP and pm and bounds on �FP and �m. A bound
on δp depending on nr, wr, r = 1, . . . , R, the deviation of
�FP and �m from zero, τFP and τm will now be derived.

First we need the definitions of a few norms for a
scalar f (x, t) with x ∈ � ⊂ R

N+ and t ∈ T = [0, T] and a
vector x:

|f |∞ = sup
�,T

|f (x, t)|, ‖x‖2
2 = xTx,

‖D(α)f‖∞ = max|ν|=α
|∂ν1∂ν2 · · · ∂νN f (x, t)|∞.

The first lemma provides bounds on τm and τFP.

Lemma 1 Assume that pm ∈ C3 and pFP ∈ C4 and that
nr is bounded for all r and let qrm = wrpm and qrFP =
wrpFP. The difference τm in (22) is bounded by

|τm(pm)|∞ ≤ cm max
r

‖D(3)qrm‖∞.

The discretization error τFP in (24) is bounded by

|τFP(pFP)|∞ ≤ 1
3
�t2|∂3

t pFP|∞ + csh2(max
r

‖D(3)qrFP‖∞

+ max
r

‖D(4)qrFP‖∞),

where h is the maximum grid size.

Proof The remainder term ρr after the first two terms
in the Taylor expansion of qr(x + nr) − qr(x) is

ρr(qr) = qr(x + nr) − qr(x)

−
∑

i

nri∂iqr − 0.5
∑

i,j

nrinrj∂i∂jqr

= 1
6

∑
i,j,k

nrinrjnrk

1∫

0

∂i∂j∂kqr(x + ζnr) dζ ,
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see [6]. Since

τm(pm) =
R∑

r=1

ρr(qrm),

it follows that there is a cm depending on nr such that
the first inequality holds.

The discretization error or remainder term in the
Taylor expansion τFPt due to the time discretization in
(12) is bounded by (see [18])

|τFPt| ≤ 1
3
�t2 sup

T
|∂3

t pFP|.

The error in the space discretization τFPs due to the first
and second derivatives is in the same way bounded by

|τFPs|∞ ≤ csh2(max
r

‖D(3)qrFP‖∞ + max
r

‖D(4)qrFP‖∞)

for some positive cs. The lemma is proved. ��

The second lemma is needed to show that the coeffi-
cients in front of the second derivatives in the FPE (3)
are positive definite under certain conditions. The stoi-
chiometric matrix S of the reactions is defined by

S = (n1, n2, . . . , nR) ∈ R
N×R. (27)

Lemma 2 Assume that the rank of the stoichiometric
matrix S in (27) is N and that wr(x) ≥ w0 > 0 in a
domain � for every r. Then

pT

(
R∑

r=1

wrnrnT
r

)
p ≥ w0pTp.

Proof The matrix nrnT
r has one eigenvalue λr = nT

r nr

different from zero and the corresponding eigenvector
is nr. There is no p �= 0 such that nT

r p = 0 for all r since
nr, r = 1, . . . , R, span R

N . A lower bound on the sum∑R
r=1 wr(nT

r p)2 is given by a p = αnj such that wjλ
2
j is

minimal

R∑
r=1

wrα
2(nT

r nj)
2 ≥ α2wj(nT

j nj)
2 = wj‖nj‖2

2pTp ≥ w0pTp,

since ‖nj‖2
2 ≥ 1. ��

We are now prepared to prove an upper bound on
the difference δp between one function pFP interpolat-
ing the solution of the discretized FPE and one function
pm interpolating the solution of the master equation.
The proof is based on the maximum principle for par-
abolic partial differential equations. The difference will
satisfy (26) in a weak sense, i.e. for any smooth function

φ(x, t) with compact support we have
∫

T

∫

�

φ(G(δp) − ε) dx dt = 0.

For a discussion of weak solutions of partial differential
equations, see e.g. [1,20].

Theorem Assume that the stoichiometric matrix S and
the propensities wr satisfy the conditions in Lemma 2
in � and that |wr|, |∂xiwr|, |∂i∂jwr|, and nr are bounded
for all r, i, and j in �. Furthermore, assume that on the
boundary ∂� of � we have |(pFP − pm)(x, t)| ≤ ε for the
reconstructed solutions pm ∈ C3 and pFP ∈ C4. Then

|(pFP − pm)(x, t)| ≤ ε + C(εd + µ),

where µ is defined by

|ε(pm, pFP)|∞ ≤ µ = |�FP(pFP)|∞ + |�m(pm)|∞
+|τm(pm)|∞ + |τFP(pFP)|∞.

Here, C and d depend on w0, T, the size of �, the bounds
on wr and its first and second derivatives, and the bound
on nr. The discretization errors τm and τFP are bounded
in Lemma 1.

Proof Let

∇ · A(p, ∇p) = 0.5
∑

r

∑
i,j

∂i(wrnrinrj∂jp),

B(p, ∇p) =
∑

r

∑
i

nri(ωr∂ip + p∂iωr),

ωr = wr + 0.5
∑

j

nrj∂jwr.

Then the FPE (3) can be written

G(p) = ∂tp − (∇ · A(p, ∇p) + B(p, ∇p)) = 0,

and it follows from Lemma 2 that

q · A(p, q) = 0.5
∑

r

∑
i,j

qi(wrnrinrjqj)

= 0.5
∑

r

wr

∑
i

qinri

∑
j

qjnrj

= 0.5
∑

r

wr(qTnr)
2 ≥ 0.5w0qTq.

There is a bound on A(p, q) with a function fq(x, t) such
that

‖A(p, q)‖2 ≤ fq‖q‖2.

Moreover, there are functions gp(x, t) and gq(x, t) such
that

|B(p, q)| ≤ gp|p| + gq‖q‖2.
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Since nr and wr, ∂iwr, ∂i∂jwr, are all bounded in �, there
are bounds on fq, gp, and gq

|fq|∞ = e, |gp|∞ = d, |gq|∞ = c.

By Lemma 1 we have a bound on |τFP−τm|∞ ≤ |τFP|∞+
|τm|∞. Then the estimate

pFP − pm ≤ ε + C(εd + µ)

follows from the maximum principle with p = q = ∞ in
Theorem 1 in [1]. The lower bound on δp

−ε − C(εd + µ) ≤ pFP − pm

is obtained by applying the same theorem to the
equation for pm − pFP. ��

Remark Under certain conditions, a similar bound can
be derived for the difference between the steady state
solutions pFP(x) and pm(x) following [15].

There is a bound in the theorem on the difference
between the solution of the master equation and the
discretized FPE for interpolating functions depending
on the discretization error τFP for the FPE, how well the
FPE approximates the master equation τm, the deviation
from zero of the space operator for the master equation
|�m(pm)|∞ for pm, and the deviation from zero of the
discretization of the FPE in space and time |�FP(pFP)|∞
for pFP. If the third derivatives of qr are all small, then
the modeling error τm in Lemma 1 will be small. The dis-
cretization error τFP can be reduced by taking shorter
time steps, using a finer grid, and by raising the or-
der of the approximation from two. Both |�m(pm)| and
|�FP(pFP)| are zero at the grid points of their respec-
tive grids and |�m(pm)|∞ and |�FP(pFP)|∞ are small for
many pm and pFP. By taking � to be in the interior of R

N+
we can expect all wr to be non-zero, so that Lemma 2 is
satisfied.

5 Test problems

The test problems for the two algorithms in Sects. 2 and
3 are all systems with stiff behavior in the sense that
they contain very different time scales as is common in
biology. Lower case letters denote the copy numbers of
the chemical species denoted by the upper case letter,
e.g. a is the number of A molecules. In all models the
biological cell volume is kept constant and cell growth is
modeled by dilution, which takes the form of a constitu-
tive degradation rate. Furthermore, the cell volumes are
assumed to be well-stirred.

5.1 Two metabolites

Two metabolites, A and B, are consumed in a bimolecu-
lar reaction by rate k2 and degraded by rate µ. The two
metabolites are each synthesized by an enzyme. Both the
synthesis rates are constrained by competitive inhibition
[12] by the respective products. The dissociation con-
stant of the product-enzyme complex KI determines the
strength of the product inhibition. We use two different
inhibition strengths and call them “weak” and “strong”,
see below. The reactions are:

∅
kA

1+ a
KI−−−→ A ∅

kB
1+ b

KI−−−→ B

A + B
k2·a·b−−−→ ∅

A
µ·a−−→ ∅ B

µ·b−−→ ∅,

where kA = kB = 600 s−1, k2 = 0.001 s−1, µ =
0.0002 s−1. For weak inhibition KI = 106 and for strong
inhibition KI = 105. The computational domain is �h =
[0, 3999]×[0, 3999]. This case corresponds to the follow-
ing parameters and functions in Sect. 2:

R = 5, xT = (a, b),

w1(x) = kA/(1 + x1/KI), nT
1 = (−1, 0),

w2(x) = kB/(1 + x2/KI), nT
2 = (0, −1),

w3(x) = k2x1x2, nT
3 = (1, 1), w4(x) = µx1, nT

4 = (1, 0),

w5(x) = µx2, nT
5 = (0, 1).

For some analysis of similar models in a biological
context, see [8].

5.2 Toggle switch

Two mutually cooperatively repressing gene products A
and B can form a toggle switch. By binding to control
sequences of the B-gene, A can inhibit production of B
and vice versa. If A becomes abundant the production
of B is inhibited and the system is in a stable state of high
A and low B. If for some reason the amount of A falls or
the amount of B is sufficiently high, the switch might flip
and B becomes abundant and A will be repressed. This
motif has been implemented in vivo in a cell [14]. In this
model A and B are formed with maximal rates kA/KA
and kB/KB, respectively. The parameters KA and KB
determine the strength of the repression and γ is the
degree of cooperativity of the repressive binding. The
reactions are:

∅
kA

KA+bγ−−−−→ A ∅
kB

KB+aγ−−−−→ B

A
µ·a−−→ ∅ B

µ·b−−→ ∅,
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where kA = kB = 3 × 103 s−1, KA = KB = 1.1 × 104,
γ = 2 and µ = 0.001 s−1. The computational domain is
�h = [0, 399] × [0, 399].

5.3 Two metabolites and one enzyme

Test problem 5.1 is extended to three dimensions by a
variable for the enzyme EA that synthesizes metabolite
A. The synthesis of the enzyme is controlled by a repres-
sion feedback loop [7]. The strength of the repression
is determined by the constant KR, which is a measure
of the affinity of the repressor for the control site. The
maximal rate of synthesis is given by the constant kEA .
The reactions are:

∅
kA·eA
1+ a

KI−−−→ A ∅ kB−→ B

A + B
k2·a·b−−−→ ∅

A
µ·a−−→ ∅ B

µ·b−−→ ∅

∅
kEA

1+ a
KR−−−−→ EA

EA
µ·eA−−→ ∅,

where kA = 0.3 s−1, kB = 1 s−1, KI = 60, k2 = 0.001 s−1,
µ = 0.002 s−1, KR = 30 and kEA = 0.02 s−1. The com-
putational domain is �h = [0, 99] × [0, 99] × [0, 19].

5.4 Two metabolites and two enzymes

Test problem 5.3 is extended by a variable for the
enzyme EB that synthesizes metabolite B in the same
way as EA synthesizes A. The reactions are:

∅
kA ·eA
1+ a

KI−−−→ A ∅
kB ·eB
1+ b

KI−−−→ B

A + B
k2·a·b−−−→ ∅

A
µ·a−−→ ∅ B

µ·b−−→ ∅

∅
kEA

1+ a
KR−−−−→ EA ∅

kEB
1+ b

KR−−−−→ EB

EA
µėA−−→ ∅ EB

µ·eB−−→ ∅,

where kA = kB = 0.3 s−1, k2 = 0.001 s−1, KI = 60,
µ = 0.002 s−1, kEA = kEB = 0.02 s−1 and KR = 30. The
computational domain is �h = [0, 99]×[0, 99]×[0, 19]×
[0, 19].

6 Numerical results

In this section, the numerical method for solution of the
FPE in (3) approximating the master equation in (2)

in Sect. 2 and the Stochastic Simulation Algorithm in
Sect. 3 for the master equation are applied to the four
different systems in Sect. 5. The domain �h is covered
by a grid with a constant step size h. A grid adapted to
the solution as in [25] would improve the performance
of the FPE solver. The execution time to compute solu-
tions of equal accuracy is compared on a Sun server (450
MHz UltraSPARC II) and the procedures to estimate
the solution errors and the variance in SSA are verified.

6.1 Error estimation in 1D

For simple one-dimensional systems there are exact
solutions to the master equation and the FPE. One such
simple system is this 1D birth-death process:

∅ k−→ A A
q·a−→ ∅. (28)

The birth rate k and the death rate q determine the first
moment of the distribution λ = k/q. The exact solution
to the master equation is a Poisson distribution

pm(a) = e−λ λa

a! , (29)

where a ∈ Z+. The exact solution of the FPE approxi-
mation is [22]

pFP(a) = Ce−2a
(

1 + a
λ

)4λ−1
, (30)

where a ∈ R+ and C is a scaling constant such that∫ ∞
0 pFP(x) dx = 1.

The error eν in the solutions computed by SSA and
FPE is determined using the exact PDFs pm in (29)
and pFP in (30) and compared with the estimated error
according to Sects. 3.2 and 2.4 for three different λ in
Figure 1.

Ideally, the symbols in Fig. 1 should coincide with the
reference line but the estimate in the SSA case is at most
wrong with a factor 2 and the estimate for the FPE is
asymptotically correct when the estimate tends to zero.

6.2 Modeling error

In Sect. 4, the difference between the solutions of the
master equation (2) and the discretized FPE (12)
depends on two quantities: the modeling error τm and
the discretization error τFP. The difference em(j) =
pFP(j) − pm(j) due to the modeling is computed for
j = 0, 1, . . . , 2λ, and three λ-values in (30) and (29). The
result measured in the 
1-norm is found in Table 1. The
deviation from the master solution is small.
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Fig. 1 The true errors ‖e‖1
in the SSA solution (left) and
the FPE solution (right) are
compared to the estimated
error
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Table 1 The FPE approximation error

λ 50 100 500

||em||1 1.18 × 10−3 5.88 × 10−4 1.17 × 10−4

Table 2 Two metabolites, weak inhibition, approximation error

Computational cells ε ||pFPE − pSSA||1
170 × 170 0.122 0.159
180 × 180 0.0690 0.0583
190 × 190 0.0480 0.0618
200 × 200 0.0368 0.0636
300 × 300 0.0128 0.0499

Exact solutions with two or more chemical species
are known only in special cases. Instead, we compare
the computed PDFs pFPE and pSSA at the steady state
obtained with the FPE and the SSA for the system in
Sect. 5.1 with weak inhibition. Five different grids with
different error tolerances ε are compared in Table 2.

By changing the grid size, τFP in the theorem in Sect. 4
is changed but the modeling error τm remains the same.
We infer from the table that for high tolerances the
discretization error dominates, while for a low ε the
difference in p is explained by the modeling error.

6.3 Two-dimensional systems

The FPE solution and the SSA solution of three 2D
problems are computed with the same estimated accu-
racy following Sects. 2.4 and 3.2. The execution times
are compared for the two algorithms to calculate the
steady state and the time-dependent solutions. The exe-
cution time includes discretization and computation of
the solution. For the steady state problem in 1D–3D the
Arnoldi method is used for computation of eigenpairs,
in 4D the Jacobi–Davidson method is used instead. The
error estimation is not included in the execution time.

The first example is the problem with two metabo-
lites and weak inhibition in Sect. 5.1. The isolines of
the steady state solution are found in Fig. 2. The work
to reach steady state, WFPE and WSSA, is measured in
seconds for the two algorithms and different number
of cells and estimated errors e and is found in Table 3.
Remember that with a stricter 95 % confidence interval
for the error in SSA the computational times would be
about four times longer.

The estimated σ for the same problem using �τ =
5×103, the final time Tmax in (19), the number of events
in SSA Nevt, and the computational time tσ in seconds to
determine σ are shown in Table 4 for the same grids as
in Table 3. The estimates of ||σ ||1 are stable independent
of the grid size. The work to calculate σ is considerable

Fig. 2 The steady state
solutions of the 2D examples
with weak (left) and strong
(right) inhibition
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Table 3 Computational work in seconds for the steady state
solution of the test problem with two metabolites and weak inhi-
bition value

Cells ||e||1 WFPE WSSA

170 × 170 0.122 194 1.25 × 103

180 × 180 0.0690 207 4.64 × 103

190 × 190 0.0480 229 1.22 × 104

200 × 200 0.0368 254 1.84 × 104

300 × 300 0.0128 584 1.04 × 105

350 × 350 0.00920 793 2.26 × 105∗

The time marked with ∗ is an estimated

Table 4 Parameters in the SSA computation of the steady state
solution of the test problem with two metabolites and weak
inhibition

Cells ||σ ||1 Tmax Nevt tσ

170 × 170 0.941 2.98 × 105 5.35 × 108 2, 350
180 × 180 0.941 9.30 × 105 1.67 × 109 3, 190
190 × 190 0.940 1.92 × 106 3.45 × 109 3, 180
200 × 200 0.900 2.92 × 106 5.25 × 109 2, 550
300 × 300 0.909 2.52 × 107 4.54 × 1010 2, 490
350 × 350 0.964 5.49 × 107 9.87 × 1010 2, 440

Table 5 Determination of �τ for σ estimation in the SSA com-
putation of the steady state solution of the test problem with two
metabolites and weak inhibition

�τ Tmax ||σ ||1 tσ

5 × 101 2.07 × 105 3.80 21.2
5 × 102 7.86 × 105 1.98 203
5 × 103 1.72 × 106 0.928 2, 030
5 × 104 2.12 × 106 0.326 20, 400

compared to the work for the full simulation WSSA for
the small problems but is negligible for the large prob-
lems. The number of events in the SSA is almost 1011

for the largest grid.
The parameter �τ is determined by numerical exper-

iments for one grid and is assumed to be valid for all
space discretizations. In Table 5 we show Tmax in (19),
‖σ‖1, and the computational time tσ to determine σ .
Between �τ = 5 × 103 and 5 × 104, ||σ ||1 drops at the
expected rate and Tmax stabilizes.

Table 6 contains the results for the steady state solu-
tion of the same system with strong inhibition. The
steady state solution is plotted in Fig. 2.

The execution times for computing the steady state
solution and the time-dependent solution at T = 104

for the toggle switch in Sect. 5.2 are collected in Tables 7
and 8. The initial solution at t = 0 is a Gaussian distri-
bution N (µ, σ 2) with µ = (133, 133)T and σ 2

j = µj. The
number of trajectories L generated to achieve the same

Table 6 Computational work for the steady state solution of the
test problem with two metabolites and strong inhibition

Cells ||e||1 WFPE WSSA

120 × 120 0.0944 95.1 4.35 × 102

160 × 160 0.0478 168 1.74 × 103

200 × 200 0.0263 268 6.11 × 103

240 × 240 0.0172 414 1.22 × 104

280 × 280 0.0130 545 1.65 × 104

300 × 300 0.0115 667 2.28 × 104

340 × 340 0.00898 849 3.68 × 104

Table 7 Computational work for the steady state solution of the
toggle switch problem

Cells ||e||1 WFPE WSSA

30 × 30 0.134 4.91 1.11 × 102

50 × 50 0.0355 9.93 1.47 × 103

70 × 70 0.0208 19.7 3.57 × 103

90 × 90 0.0129 33.2 1.18 × 104

110 × 110 0.00832 50.1 2.82 × 104

Table 8 Computational work for the time-dependent solution of
the toggle switch problem at T = 104

Cells ||e||1 WFPE L WSSA

30 × 30 0.0952 7.08 7.8 × 103 8.35 × 101

50 × 50 0.0339 18.1 1.6 × 105 1.68 × 103

70 × 70 0.0164 35.6 1.3 × 106 1.36 × 104

90 × 90 0.00979 61.9 5.9 × 106 6.25 × 104

110 × 110 0.00667 98.0 1.9 × 107 1.95 × 105

accuracy with SSA as in the PDE solution is more than
107 in some cases. The time evolution of a system with
an unsymmetric initial distribution is displayed in Fig. 3.

The FPE solver is much faster than the SSA, espe-
cially for higher accuracies, in all the examples above.
The difference is two orders of magnitude or more in
many cases. This is explained by the work estimates in
Sects. 2.5 and 3.2. For 2D problems and second order
accuracy for the steady state solution, the work for the
FPE based algorithm is proportional to ε−1 but for SSA
it is ∝ ε−2.

6.4 Three-dimensional system

The work in seconds to compute the steady state solu-
tion of the test problem with three molecular species in
Sect. 5.3 is found in Table 9. The execution times for
the FPE are somewhat longer compared to problems
of the same size in 2D in the previous section but the
SSA is much faster making it the preferred algorithm.
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Fig. 3 A solution of the
toggle switch at t = 103 (left)
and t = 106 (right)
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Table 9 Computational work for steady state solution of the test
problem with two metabolites and one enzyme

Cells ||e||1 WFPE WSSA

18 × 18 × 18 0.102 82.6 5.72
20 × 20 × 20 0.0859 121 10.4
30 × 30 × 20 0.0618 316 22.1
40 × 40 × 20 0.0565 658 33.6
40 × 40 × 30 0.0296 1740 124

The speed of the SSA for this problem is mainly due to
the fact that molecule numbers are very small and the
system is not very stiff. Since a trajcetory is simulated
the method is very dependent of both these properties.
Still, the FPE has convergence properties that will make
it useful for 3D problems.

6.5 Four-dimensional system

The methods for the steady state problem in Sect. 5.4
are compared in Table 10.

Also here SSA is much more efficient than the FPE
based algorithm. This is what we can expect when the
dimension of the problem inceases.

The computational work for the time-dependent,
four-dimensional problem at time T = 100 is displayed
in Table 11. The initial distribution is a Gaussian distri-
bution N (µ, σ 2) with µ = (33, 33, 7, 7)T and σ 2

j = µj.

Table 10 Computational work for the steady state solution of the
test problem with two metabolites and two enzymes

Cells ||e||1 WFPE WSSA

18 × 18 × 18 × 18 0.104 2, 510 41.9
20 × 20 × 20 × 20 0.0864 4, 150 59.8
24 × 24 × 24 × 24 0.0772 5, 900 93.4
30 × 30 × 20 × 20 0.0723 9, 340 126

Table 11 Computational work for the time-dependent solution
at T = 100 of the four-dimensional problem

Cells ||e||1 WFPE L WSSA

18 × 18 × 18 × 18 0.0930 4.55 × 103 1.0 × 106 8.51 × 102

20 × 20 × 20 × 20 0.0789 6.26 × 103 6.0 × 105 1.48 × 103

24 × 24 × 24 × 24 0.0547 9.98 × 103 4.1 × 106 4.08 × 103

30 × 30 × 20 × 20 0.0573 1.29 × 104 3.0 × 106 5.63 × 103

The difference is smaller between the two solution
methods for the 4D time-dependent case than for the
steady state problem in Table 10. The explanation to
this behavior is that the ergodic property of the system
makes steady state solutions with SSA efficient since the
entire simulated trajectory can be used to estimate the
solution. The time-dependent solution of p is computed
by simulation of trajectories in time where only the final
state can be used for the solution. About 106 realiza-
tions by SSA are necessary for the same accuracy as in
the FPE solution.

6.6 Execution time in theory and experiments

The predictions of the work estimates in Sects. 2.5 and
3.2 are compared to the recorded execution times in
Figs. 4, 5, and 6. The agreement for the steady state
problems is good in all cases except for the two metabo-
lites with weak inhibition and the 3D problem in Fig. 4.
However, for lower tolerances in the asymptotic regime
the trend is as expected from (15) for all examples.

A faster growth of the work is predicted by (16) than is
measured in Fig. 6 for the time-dependent problems. The
maximum local error in the adaptive time discretization
is allowed to be as large as the error in the space discret-
ization. The inital time step is chosen to be �t0 = 0.01T
and the growth in �t in every step is limited. The result
is that the maximum time step is not reached for any ε

and almost the same sequence of steps is generated in
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Fig. 4 Work as a function of the tolerance ε for the steady
state problem solved by the FPE: 2D - weak inhibition (cross),
2D - strong inhibition (inverted triangle), toggle switch (plus), 3D
(asterisk) and 4D (dot), and dashed reference lines with slopes −1
(no symbol), −3/2 (open circle) and −2 (open square)
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Fig. 5 Work as a function of tolerance for the steady state
problem solved by the SSA: 2D-weak inhibition (cross),
2D - strong inhibition (inverted triangle), toggle switch (plus), 3D
(asterisk) and 4D (dot), and dashed reference line with slope −2

all examples. Hence, the work is relatively independent
of the time integration and is dominated by the space
discretization as it is in the steady state problem.

7 Conclusions

Two methods to approximate the probability density
function for the molecular copy numbers in biochem-
ical reactions with a few molecular species have been
derived and compared. The steady state solution and the
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Fig. 6 Work as a function of tolerance for the time-dependent
problem solved by the FPE: toggle switch (plus) and 4D (dot),
and dashed reference lines with slopes −3/2 (open square), −5/2
(open circle)

time-dependent solution of the Fokker–Planck equation
(FPE) have been computed and the same solutions have
been obtained by the Stochastic Simulation Algorithm
(SSA) [16].

A bound on the difference between the solutions is
proved by the maximum principle for parabolic equa-
tions. The errors in the numerical methods are estimated
and the execution times for equal errors are compared.
The FPE approach is much more efficient for the two-
dimensional test problems while SSA is the preferred
choice in higher dimensions. However, the results de-
pend on the properties of the problem: the size of the
computational domain, the stiffness of the chemical
reactions, and the chosen error tolerance.

Acknowledgments Paul Sjöberg has been supported by the
Swedish Foundation for Strategic Research, the Swedish Research
Council, and the Swedish National Graduate School in Scientific
Computing. Johan Elf has been supported by Måns Ehrenberg’s
grant in Systems Biology from the Swedish Research Council and
the Knut and Alice Wallenberg Foundation. Johan Tysk provided
us with [1].

References

1. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasi-
linear parabolic equations. Arch. Rat. Mech. Anal. 25, 81–122
(1967)

2. Benzer, S.: Induced synthesis of enzymes in bacteria ana-
lyzed at the cellular level. Biochim. Biophys. Acta 11, 383–395
(1953)

3. Berg, O.G.: A model for the statistical fluctuations of protein
numbers in a microbial population. J. Theor. Biol. 71, 587–603
(1978)



50 P. Sjöberg et al.

4. Berg, O.G.: On diffusion-controlled dissociation. J. Chem.
Phys. 31, 47–57 (1978)

5. Cao, Y., Gillespie, D., Petzold, L.: Multiscale stochastic sim-
ulation algorithm with stochastic partial equilibrium assump-
tion for chemically reacting systems. J. Comput. Phys. 206,
395–411 (2005)

6. Dieudonné, J.: Foundations of modern analysis, Academic,
New York (1969)

7. Elf, J., Berg, O.G., Ehrenberg, M.: Comparison of repressor
and transcriptional attenuator systems for control of amino
acid biosynthetic operons. J. Mol. Biol. 313, 941–954 (2001)

8. Elf, J., Paulsson, J., Berg, O.G., Ehrenberg, M.: Near-critical
phenomena in intracellular metabolite pools. Biophys. J. 84,
154–170 (2003)

9. Elowitz, M.B., Surette, M.G., Wolf, P.-E., Stock, J.B., Leibler,
S.: Protein mobility in the cytoplasm of Escherichia coli. J.
Bacteriol. 181, 197–203 (1999)

10. Érdi, P., Tóth, J.: Mathematical models of chemical reactions.
Princeton University Press, Princeton (1988)

11. Ferm, L., Lötstedt, P., Sjöberg, P.: Conservative solution of
the Fokker–Planck equation for stochastic chemical reactions.
BIT (in press, 2006)

12. Fersht, A.: Structure and mechanism in protein science: a
guide to enzyme catalysis and protein folding. W. H. Freeman
& Co, New York (1998)

13. Gardiner, C.W.: Handbook of stochastic methods. Springer,
Berlin Heidelberg New York (1985)

14. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a
genetic toggle switch in Escherichia coli. Nature 403, 339–342
(2000)

15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equa-
tions of second order. Springer, Berlin Heidelberg New York
(1977)

16. Gillespie, D.T.: A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions.
J. Comput. Phys. 22, 403–434 (1976)

17. Greenbaum, A.: Iterative methods for solving linear systems.
SIAM, Philadelphia (1997)

18. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary
differential equations, nonstiff problems. 2nd edn., Springer,
Berlin Heidelberg New York (1993)

19. Haseltine, E.L., Rawlings, J.B.: Approximate simulation of
coupled fast and slow reactions for stochastic chemical kinet-
ics. J. Chem. Phys. 117, 6959–6969 (2002)

20. John, F.: Partial differential equations. 3rd edn., Springer,
Berlin Heidelberg New York (1980)

21. Kærn, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity
in gene expression: from theories to phenotypes. Nat. Rev.
Genet. 6, 451–464 (2005)

22. van Kampen, N.G.: Stochastic processes in physics and chem-
istry. Elsevier, Amsterdam (1992)

23. Larsen, R.J., Marx, M.L.: An introduction to mathematical
statistics and its applications. 2nd edn., Prentice-Hall, Engle-
wood Cliffs (1986)

24. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’
guide: solution of large-scale eigenvalue problems with
implicitly restarted Arnoldi methods. SIAM, Philadelphia
(1998)

25. Lötstedt, P., Söderberg, S., Ramage, A., Hemmingsson-
Frändén, L.: Implicit solution of hyperbolic equations with
space-time adaptivity. BIT 42, 134–158 (2002)

26. MATLAB: The MathWorks, Inc., Natick, MA, USA,
http:// www.mathworks.com

27. Novick, A., Weiner, M.: Enzyme induction as an all-or-none
phenomenon. Proc. Natl. Acad. Sci. USA 43, 553–566 (1957)

28. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson
iteration method for linear eigenvalue problems. SIAM J.
Matrix Anal. Appl. 17, 401–425 (1996)

29. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly
converging variant of Bi-CG for the solution of nonsymmet-
ric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644
(1992)

30. Xie,X.S.: Single-molecule approach to dispersed kinetics
and dynamic disorder: Probing conformational fluctuation
and enzymatic dynamics. J. Chem. Phys. 117, 11024–11032
(2002)


	Fokker--Planck approximation of the master equationin molecular biology
	Abstract 
	Introduction
	Deterministic solution of the Fokker--Planck equation
	The FPE and its boundary conditions
	Space discretization
	Time discretization
	Error estimation
	Work to solve the FPE
	Monte Carlo solution of the master equation
	Steady state problem
	Error estimation and computational work
	The time-dependent problem
	Comparison of the solutions
	Test problems
	Two metabolites
	Toggle switch
	Two metabolites and one enzyme
	Two metabolites and two enzymes
	Numerical results
	Error estimation in 1D
	Modeling error
	Two-dimensional systems
	Three-dimensional system
	Four-dimensional system
	Execution time in theory and experiments
	Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


