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Abstract
The helical structure of DNA imposes constraints on the rate of diffusion-
limited protein binding. Here we solve the reaction–diffusion equations for
DNA-like geometries and extend with simulations when necessary. We find
that the helical structure can make binding to the DNA more than twice as fast
compared to a case where DNA would be reactive only along one side. We
also find that this rate advantage remains when the contributions from steric
constraints and rotational diffusion of the DNA-binding protein are included.
Furthermore, we find that the association rate is insensitive to changes in the
steric constraints on the DNA in the helix geometry, while it is much more
dependent on the steric constraints on the DNA-binding protein. We conclude
that the helical structure of DNA facilitates the nonspecific binding of tran-
scription factors and structural DNA-binding proteins in general.

S Online supplementary data available from stacks.iop.org/JPA/49/364002/
mmedia

Keywords: reaction–diffusion equation, steric constraints, helix geometry,
diffusion limited

(Some figures may appear in colour only in the online journal)

Diffusion-limited reactions play a central role in living cells since the macromolecular density
is pushed close to crystalline concentrations [1]. Diffusion-limited reaction rates are well
characterized in the case of reactive spheres, where the microscopic reaction–diffusion
equations have been previously solved [2–12]. The binding time is in this case described by a
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sum of two parts where the first part is due to reaction at contact and the second part is due to
the time for reactants to meet by diffusion [3, 6]. When the spheres are equally reactive over
their entire surface, the diffusion-influenced reaction rate ka is given by

pr= +k k D1 1 1 4 ,a where ρ is the reaction radius, D is the relative diffusion rate and k is
the microscopic rate of binding for the local concentration of reactants in contact with the
target sphere. This expression implies that when diffusion is fast ka=k and when diffusion is
slow ka=4πρD. The latter relation is the diffusion limit, also known as the Smoluchowski
limit.

The diffusion-limited protein binding in the case of a helical DNA-like geometry is more
complex since binding to any position on a polymer extended in one-dimension (1D) is a 2D
reaction–diffusion problem in which the DNA binding proteins are spatially correlated to their
DNA target [13, 14]. This implies that proteins return to the same DNA segment many times
before leaving their current segment and thereby ‘forgetting’ their localization. While
mathematically complex, protein binding to DNA is central for life as we know it. For
example, proteins need to bind DNA to turn specific genes ‘on’ and ‘off’, RNA polymerases
need to initiate transcription of genes, and structural proteins need to bind DNA for efficient
storage, replication and repair. The characteristic double helix structure of DNA [15] has
functional importance in that the two strands enable semi-conservative replication [16] and
that it contributes to structural stability in long term storage.

The question we now ask is how the helical structure of DNA contributes to the rate of
diffusion-limited binding, which, in turn, is important for accessing the genetic information.
In particular we ask if it matters for the rate of binding if the reactive patches are twisted into a
helix like the grooves on DNA, rather than if they were straight?

Figure 1. Reaction–diffusion equation and boundary conditions for example geometry.
Only when the reactive patch on the sphere (gray) is in contact with the reactive patch
on the cylinder do they react with rate κ. The sphere moves around the cylinder with
translational diffusion rate D. When the sphere reaches a distance Rc away from the
cylinder it is equally likely to bind another DNA segment.
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Results

Reactive patches on the DNA

Our approach for investigating the importance of the helical structure on the rate of protein
binding to DNA is to solve the microscopic reaction–diffusion equations with specific con-
figurations of reactive patches (see example equations in figure 1 and methods or the sup-
plementary information (SI) for details of how they are solved). The DNA is represented by a
cylinder and the protein by a sphere with reactive regions, or patches, on them.

For a periodically repeating configuration of reactive patches on the cylinder and a fully
reactive sphere, the solution can be written on the simple closed form (equation (S11) in the
SI)

= p
a r+ +

k , 1a
Dℓ

F R f F

2
1 ln c

( )
( ) ( )

where ℓ is the length of a base pair, F is the fraction of the cylinder surface that is reactive, ρ
is the reaction radius, D is the relative translational diffusion rate constant, and Rc is the
distance from the DNA where it is equally likely for the protein to bind another DNA
segment. There are two particularly important parameters, a k p p= =D k DℓF2 2 and
f (F ). Here, α is a unit-less measure related to the degree of diffusion control.

Under reaction-limited conditions a F 1 ,( ) i.e. where reaction upon contact is unlikely,
p a= =k Dℓ F k2 .a Here, the rate depends only on the size of the reactive patches and not on

their geometric arrangement. In the limit of large αF, the diffusion-limited result is

p r p r= + = -k Dℓ R f F Dℓ R2 ln 2 ln e , 2a c c
f[ ( ) ( )] [ ( )] ( )

which implies that the rate of binding is determined only by diffusion and geometric factors.
The shapes and arrangements of the reactive patches all end up in the steric factor f (F ),
where f (1)=0. Thus f depends on the fractions of the surfaces that are reactive and their
shapes, but not on the rates of reaction or diffusion. This separation of terms implies that the
patch distribution generally can be seen as a change in the reaction radius ρeff =ρe−f, which
simplifies the thinking about geometry in the reaction–diffusion process.

We have derived closed-form expressions for the steric factor f (F ) for two different
geometries: a reactive stripe along a cylinder and rings of reactive regions around a cylinder
(figure 2). The full expressions for the steric factor are given in the SI section for the ring case
and in [17] for the stripe case. We will here first focus on approximate solutions in cases
where F is small. For a reactive stripe along the cylinder, the steric factor

Figure 2. Illustration of the reaction geometries. (a) Stripe. (b) Ring. (c) Helix. The
reaction patch covers a fraction F of the cylinder. (d) The steric factor f plotted as a
function of F in the different geometries.
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is » -f F Fln 2 ,2( ) ( ) equation (S13). For reactive rings around a cylinder the steric factor
is pr» -f F F hln 2 2 ,2( ) ( ) equation (S12), in the limit where the distance between rings, h,
is smaller than the circumference at the reaction radius, 2πρ, which is generally the case for
protein–DNA interactions. For the comparisons we have assumed that h=10.4ℓ, i.e. the
helical repeat distance of B-DNA. The analytical solutions for the helix geometry are,
however, out of our reach, but as can be seen when compared to simulations in figure 2(d), the
helix case is virtually identical to the ring case (see methods for details about the simulations).
The difference in the association rate between the ring and the helix geometries is expected to
increase with an increasing period length where the helix case should become stripe-like. This
is shown in figure 3. For the numerical calculations in the figures we have used typical values
for the interaction radius (ρ=5.5 nm), in vivo DNA density (Rc=14 nm) and protein dif-
fusion (D=3 μm2 s−1) [17, 18].

Figure 3. The diffusion-limited association rate as a function of the periodicity length
with a fully reactive protein, FP=1, and a DNA cylinder with F=0.1. The biological
periodicity corresponds to h/10.4 =ℓ    1. When the helical reactive patch on the DNA
cylinder is stretched out, it becomes the stripe case. Blue dots correspond to the
simulated values.

Figure 4. (a). The diffusion-limited association rate ka plotted as a function of the
reactive patch fraction on the cylinder, F, in the three different geometries shown in
figures 2(a)–(c). (b) The increase in association rate to a helix compared to a stripe for
different diffusion limitation (α, x-axis) and F (legend).
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Figure 4(a) shows how the overall rate ka changes with F, i.e. the fraction of the DNA
surface that is reactive, and figure 4(b) shows the ratio of association rates for the helix and
stripe cases as a function of the degree of diffusion control, α, for a few different reactive
surface fractions, F. The difference between the helix and stripe cases disappear both in the
limit of reaction control a F 1( ) and for fully reactive DNA (F→1). The ratio approaches
the theoretical limit pr h2 for a diffusion-limited reaction as F gets very small. However, it is
significantly faster to bind to a helix than to a stripe with the same surface coverage also for
conditions realistic to a DNA geometry with intermediate values of F (figure 4(a)).

Reactive patches on the protein

We now ask if the dependence of ka on the shape of the reactive patch on DNA remains with
a reactive surface patch on the protein and with differences in rotational diffusion included.
Here we assume that the reactive patch on the protein is an axially symmetric region that
occupies the fraction FP of the protein surface (see figure 1). When only the fraction FP is
reactive, the association rate constant in the reaction-controlled limit can be written as

k p a= =k ℓFF Dℓ FF2 , 3P P ( )
which also defines α. The combination αFFP is predicated by the fact that in the reaction-
controlled limit, the distribution over all coordinates of the configuration space is
homogeneous and the association rate must be proportional to the fraction of that space
that is reactive. The analytical calculations, as well as the simulations involving a helical
constraint on DNA, show that the steric constraints enter the resulting nonspecific association
rate constant as an additive term to 1/αF. We conjecture that the association rate constant can
be written on the same form as equation (1) also when Fp<1, i.e.

p
a r

=
+ +

k
Dℓ

FF R f F F

2

1 ln ,
4a

P c P( ) ( )
( )

Figure 5. Diffusion-limited ka calculated from =k k k k 1 ,a a
diff ( – ) where ka was

simulated for different values of α using different patch geometries as indicated. In
panel (a), the dashed curves show the corresponding results from the analytical
solutions.
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or,

p a
r
p

= +
+

= +
k Dℓ FF

R f F F

Dℓ k k

1 1

2

ln ,

2

1 1
, 5

a P

c P

a
diff

( ) ( ) ( )

When α→0 (reaction limit), this gives p a =k k Dℓ FF2 ,a P and when α→∞ (diffusion
limit) it gives p r = +k k Dℓ R f F F2 ln , .a a c P

diff [ ( ) ( )] The steric constraint factor, f (F,
FP), may also depend on the other parameters like h, ρ and Rc, as well as on the geometric
configuration of the reactive regions. It will also depend on the relationship between the
diffusion constants for translation and rotation of the protein, but not on the reaction rates.

The conjecture in equation (5) implies that =k k k k 1 ,a a
diff ( – ) which should be inde-

pendent of the value of α used to simulate the value of ka. Indeed, the expected independence
of α is displayed in figure 5. Figure 5(a) also shows the good agreement between the
analytical solutions and the simulation results for the stripe- and ring-cases when Fp=1.
Figure 5(b) shows that the ring and helix geometries remain equivalent also for values of
Fp<1. However, as seen particularly in figure 5(b), the simulation results show a small
discrepancy from the expected independence of α. This could be due to some small numerical
error that increases with increasing α, where a very large number of very short-lived micro-
dissociations (micro-hops) will precede a macroscopic dissociation.

In order to understand how geometry influences the diffusion-limited reaction, ka
diff can

be rewritten as the product p r r= ´ + -k Dℓ R f R2 ln 1 ln ,a c c
diff 1[ ( )] [ ( )] where the

first factor, p rDℓ R2 ln ,c( ) is the macroscopic encounter rate, i.e. the rate with which the
protein and DNA come together—in arbitrary orientations. In each macroscopic encounter,
the protein will leave the DNA many times in short excursions (micro-hops) before either a
binding or a macroscopic dissociation occurs. During these short excursions, the protein can
change orientation or location along the DNA and effectively test new orientations for
reactivity. The second factor, [1+f/ln(Rc/ρ)]

−1, can be interpreted as the probability that a
macroscopic encounter will—either directly or through micro-hops—find the reactive con-
figuration before macroscopic dissociation occurs.

The next question is how a reactive patch on the protein influences the advantage of
having a helical reactive patch on the DNA. In figure 6 we show that the relative association
rate between the stripe and helix cases depends only weakly on the fraction of the sphere that

Figure 6. The ratio of association rates in the diffusion-controlled limit for helical
geometry versus the stripe geometry shown as isosurfaces for different combinations of
fraction of the cylinder (F ) and sphere (FP) that are reactive. The rotational diffusion
is given by the Stokes–Einstein relation.
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is reactive. Thus the association rate amplification due to a particular patch distribution on the
DNA does not depend on the size of the patch on the protein, although the absolute rate of
binding drops with the fraction of the protein that is reactive.

The influence of the reactive patch on the protein is even smaller if we also consider that
the rotational diffusion in the living cell is higher than what is expected from the Stokes–
Einstein relation between translational and rotational diffusion [19]. Figure 7 shows that the
effect of rotational diffusion is to broaden the reactive patch on the protein. With increasing
rate of rotational diffusion the diffusion-limited association rate slowly approaches the limit of

Figure 7. (a). The increase in the diffusion-limited association rate when the rotational
diffusion is increased. (b) The diffusion-limited association rate for a protein with an
axially symmetric reactive patch relative to the diffusion-limited association rate for a
fully reactive protein (FP=1). For both plots the x-axis shows the increase of DR

relative to the hydrodynamic (Stokes–Einstein) value =D D R0.75R p
hydro 2 and the

protein radius was taken as Rp=4.5 nm. The values were obtained by simulations with
the helix geometry.

Figure 8. The dependence of the diffusion-limited ka on the patch size of the protein (a)
and on the patch size of the cylinder. (b) The magenta color corresponds to the helix
geometry and the black color the stripe geometry. Note that all curves go to zero when
F or Fp does.
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a fully reactive protein surface (FP=1; figure 7(b)). The effects are significant but not
dramatic. As expected, the largest effect is for small Fp. E.g., increasing the rotational
diffusion 10 times leads to an increase of ka by at most a factor 1.75 (if FP�0.1; figure 7(a)).

Two additional observations from the simulations are shown in figure 8. First, we find a
nonlinear dependence of ka on FP for all values of F (figure 8(a)). This is similar to the
sphere–sphere case when one of the spheres is fully reactive [12], figure S2 in the SI.
Secondly, it is more difficult for the protein to align with the reactive patch if misaligned in
the stripe geometry compared to the helical geometry. This implies that ka is much more
sensitive to changes in F for the stripe geometry than for the helical geometry (figure 8(b)).
The dependence of ka on the fraction of the cylinder that forms the reactive helical constraint
is very weak in the diffusion-controlled limit; a reduction in F by 80% (from 100% to 20%)
only reduces ka by ca 20% if FP=1, or by ca 35% if Fp=0.2 (figure 8(b)). In contrast, the
dependence on the size of the reactive patch on a spherical protein is substantial; ka is reduced
by ca 60% when Fp is reduced by 80% (from 100% to 20%) if F=0.5, or by 65% if F=0.2
(figure 8(a)).

Discussion

In this work we have investigated how the non-sequence-specific association of a generic
protein to DNA is influenced by restricting reactions to patches. In practice we have solved
the reaction–diffusion equations for specific patch geometries and extended with simulations
for the helical DNA geometry. In conclusion we have found that it is faster to bind reactive
regions on DNA in the form of a helix than in the form of a straight stripe. The reason is that it
is easier for a sphere to explore the nearest surface along a cylinder than to diffuse around it.
As a consequence, the association rate to a helix is not sensitive to the steric constraint, F
(figure 8(b)). It is also the physical reason why the helical constraint is indistinguishable from
our results with periodic rings around the DNA. The increased rate of association applies
directly to DNA structural proteins that bind all along the DNA, such as Fis, H-NS, and HU in
bacteria [20] and histone proteins in eukaryotes. The fact that DNA is twisted into a helix
rather than being a straight polymer thus makes DNA binding dynamics twice as fast at given
protein concentrations. Finally, the advantage of binding to a helical patch rather than to a
stripe on a cylinder is independent of the size of the patch on the protein (figure 6) but
strongly dependent of the size of the patch on the DNA.

Electrostatic interactions are not explicitly considered in these calculations. Instead, some
of the geometric parameters of the model are ‘effective’ and should be considered as
incorporating electrostatic effects. Thus, the cylindrical capture radius, ρ, should extend as far
out in the solution as determined by the reach of the electrostatic potential. Under physio-
logical ionic conditions, the potential is strongly screened and the reach is limited [21, 22].
However, the shape of the potential will also be influenced by the pitch of the helical charge
distribution along the cylinder. Thus, there may be a difference in the effective capture radius
for the helical case versus straight stripe considered here. It should be noted, however, that the
association rate depends logarithmically and is therefore very insensitive to the choice of the
parameter ρ.

More important may be the possibility that electrostatic forces could help steer the
protein into the correct orientation for binding. DNA-binding proteins often have anionic
patches in locations that in the bound state end up in contact with the negatively charged
phosphate backbone of the DNA [23]. Clearly this strengthens the binding constant, but
electrostatic steering could also aid the association thereby reducing the effect of the steric
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constraints. Thus, the parameters F and Fp would effectively become larger, particularly
under low-salt conditions. Such an increase in orientational tolerance due to short-range
interactions has been studied for protein–protein association [10]. The main question is how
close in position and orientations the reaction partners will have to be to ensure that binding
takes place. In any particular case, however, both F and Fp will be guesstimates; the main
result here is to show how the association rate depends on changes in their values. In principle
there is a third orientational constraint which has not been included in these calculations. That
is when the reactive patch on the protein has a direction that needs to be aligned with the pitch
of the helix. This may further reduce the association rate constant, but is not expected to
change significantly the structure of the overall results.

Intracellular crowding [11] is considered in two ways. First it is the reason for the slow
translation diffusion which is likely to push the reaction into the diffusion-limited regime.
Secondly we investigate the dependence of the nonspecific association rate on the rotational
diffusion, which is less hindered by crowding than the translational diffusion. Importantly, we
find that the nonspecific association rate constant depends fairly weakly on the rotational
diffusion constant for biologically reasonable values of F and FP (figure 7).

For site-specific binding proteins, such as transcription factors, the situation is more
complicated [18]. The first step of DNA binding is a non-specific binding event, such as
described in this communication and which is made faster by the helical shape of the DNA.
This can be followed by a sliding search in a 1D diffusion [14, 24–28] following the helical
pitch of DNA [17, 29–33]. The helical sliding is limited hydrodynamically by the rotational
motion and is therefore slower than the corresponding sliding along a straight stripe [34, 35].
Thus as described in the SI, the sliding-limited specific association rate will in general be
much smaller for the helical structure than for a straight stripe. When the continuous helical
track is cut off, like in the ring distribution of patches, sliding as a search mechanism will be
impracticable. The situation is further complicated by crowding on DNA [36] where other
proteins bound to DNA can block the search path. Only in the limit where the effective
sliding length is longer than the distance between such ‘road blocks’, would the specific
association be determined primarily by the non-specific rate described here. Thus, eukaryotic
transcription factors that slide longer than the 50 bp between nucleosomes will have a direct
advantage of the helical geometry for site specific binding.

Methods

The return-time distribution

While it is straight-forward to generate analytical solutions for the stationary association flux
in the simpler geometries (fully reactive sphere and reactive stripe or rings on the DNA), in
the more complex helix geometry or for a partially reactive protein, it is more convenient to
use simulations of the dynamics of the dissociation process. Initially, the DNA is considered
as a smooth reactive cylinder and the protein as a smooth reactive sphere; the steric con-
straints are accounted for later. A protein is bound to a long DNA chain. At time t=0 it
dissociates and starts free diffusion in solution; when and where will it rebind? The coordinate
r is the distance between the cylinder axis and the center of the sphere and the angular
coordinate j is the azimuthal angle from the point on the cylinder where the protein started.
The reaction radius ρ is the r-coordinate at contact, i.e. the sum of radii of the cylinder and the
sphere. The DNA is considered as a straight cylinder only in the neighborhood where the
protein is binding. If the protein reaches a distance r=Rc, it is lost to the particular DNA
segment it started from and is free to rebind anywhere. Rc is defined from the density cns
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(bps/volume) of DNA in solution such that p =R ℓ c1 ,c ns
2 where ℓ is the length of a

base pair.
If, to begin with, the motion along the cylinder axis (the z-direction) is disregarded, the

free diffusion is governed by the diffusion equation in polar coordinates:
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Here, the radial eigenfunctions satisfying the boundary conditions are expressed in Bessel
functions as
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from the boundary condition at r=ρ. Here we have introduced the parameter α≡κ/2πD.
The return flux at position j at time t is given by
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Numerically, this is the same as our previous result [14, 18]
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The total return flux (given return) independently of the angle j is
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This is the probability density for the return-time distribution from which a stochastic return
time τ1 can be generated. The corresponding distribution function is
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or the corresponding distribution function
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During the free diffusion, the protein will also move along the z-axis. This motion will be
independent of the motion in the r- and j-coordinates. Assuming that the protein starts at
position z=0, its diffusion is given by the probability density

/

p
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4
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Thus, the return flux to position j, z at time t is

j j= FF z t t v z t, , , , . 21( ) ( ) ( ) ( )

The boundary condition at r=ρ (equation (8)) can be reformulated through application of
the recurrence relations for the Bessel functions:
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where η=Rc/ρ. From this relation the roots qmn can be generated without recourse to
numerical derivation. Also the normalization integral can be reformulated in a similar manner:
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Protein rotations

Finally, the rotations of the protein must be accounted for. Define the protein orientation as
the vector from the center of the sphere to the center of the reactive patch. Based on the
properties of the spherical harmonics in a spherical coordinate system where the main axis is
aligned with the protein patch vector at time t=0, the probability density over the spherical
polar angle θ at a later time t is

åq q q=
+
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¥
- +G t

n
P, sin

2 1

2
cos e , 24

n
n

n n D t

0

1 R( ) ( ) ( ( )) ( )( )

where Pn is a Legendre polynomial. The probability density over the azimuthal angle f is
uniform at all later times. The probability that θ<θs after time t is given by the distribution
function
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At any of the stochastically generated return times, the spherical polar rotation angle can be
generated from this relation. The corresponding azimuthal rotation fs is generated from a
uniform distribution. These rotation angles are then appropriately added to the coordinates
defined in relation to the DNA cylinder as described below.

Overview of the event-driven simulation scheme

The idea behind the event-driven simulation (see SI for pseudocode) is to characterize the
protein–DNA association kinetics by sampling a large number of rebinding attempts after the
protein and DNA has just microscopically dissociated from each other. The return time
distribution (equation (17)) for the protein re-associating to DNA was derived by solving the
translation-rotation coupled diffusion equation for a fully reactive sphere and the fully
reactive cylinder (equation (6)) with boundary conditions (equations (7) and (8)) and initial
condition (equation (9)). While sampling this return time, and while also keeping track of the
position of the reactive patches on the protein and DNA, rebinding simulations with arbitrary
reactive patch geometries can be performed. For each sampled return time there is a
corresponding probability distribution for the cylindrical azimuthal angle (equation (19)), for
diffusion of the protein along the length of the cylinder axis (equation (20)) and for rotational
diffusion of the protein (equation (25)).

After a microscopic dissociation event that leaves the reactants right next to each other,
diffusion will carry them apart (macroscopic dissociation) with probability 1-Φ0

(equation (15)). If dissociation is not successful, a re-association occurs that could lead to
rebinding if the orientations allow. If rebinding does not occur, the simulation continues from
the new orientation angles until either a dissociation (probability 1-Φ0) or a new re-association
occurs where orientations can again be tested. After a rebinding event or a successful dis-
sociation, the simulation restarts with a uniform distribution over both reactive patches. The
initial uniform distribution over the reactive patches is a consequence of microscopic
reversibility and assumes that the dissociation process starts from an equilibrated bound state.
The fraction of all rebinding attempts (4×105 or 106 for all points in all figures) where the
protein dissociates rather than rebinds gives the probability of dissociation, Pdiss. This is the
main simulation result but we can also get the nonspecific association rate constant, ka, by
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multiplying Pdiss with the microscopic association rate constant k giving
p a= =k D ℓFF P kP2 .a P diss diss In the diffusion-controlled limit, α→∞, where simulations in

this way are impossible, ka can be calculated from the simulated Pdiss for α<∞ as

= -k kP P1 . 26a
diff

diss diss( ) ( )

In practice, it is inconvenient to choose a large α in the simulations as that leads to a very
large number of very short-lived micro-dissociations. Except where stated otherwise, in the
calculation reported here α=16 has been used. It can be noted that this simulation scheme
allows a consistent way of accounting for the inhomogeneous boundary conditions that does
not require the approximation introduced by Shoup et al [7], which assumes that the total
association flux is homogeneous over the reactive surfaces. In this simulation scheme, a
protein that returns to the cylinder is allowed a ‘virtual binding’ using the reactive boundary
condition, equation (8), regardless of orientation. It will be bound only if the steric constraints
are satisfied. If not, it is immediately returned to the position just outside the reaction radius
and allowed to continue its attempt at macroscopic dissociation. In effect, in spite of the
reactive boundary condition employed also outside the reactive regions, no reaction occurs
there and the protein is treated as reflected.

Updating the simulation coordinates

To be able to perform rebinding simulations for different sphere and cylinder geometries, it is
important sample and update the position of the protein sphere relative to the DNA cylinder as
well as the orientation of the protein reactive patch. Let jD and zD be the cylindrical azi-
muthal angle and height coordinate defining the contact point between the DNA cylinder and
the protein sphere. The change in these coordinates is sampled (equations (19) and (20)) at
each rebinding attempt of the simulation and they can be updated by addition as

j t j j= +0 27D D1( ) ( ) ( )

and

t = +z z z0 . 28D D1( ) ( ) ( )
A suitable coordinate system is needed to keep track of the position of the reactive patch on
the protein sphere. The z-axis of the coordinate system of the sphere is defined to be the same
as the z-axis of the coordinate system of the cylinder, while the x-axis of the coordinate
system of the sphere is defined to be in the direction going from the center of the sphere to the
contact point between the sphere and the cylinder. The center of the reactive patch on the
protein sphere then defines the spherical azimuthal and polar angles fp and θp. With this
definition of the coordinate systems, an update of the spherical azimuthal angle is required
each time the cylindrical azimuthal angle is updated. More specifically, fp and jD are
additive with reverse signs, so that

f t f j= -0 29p p1( ) ( ) ( )

updates fp for each return of the protein to the DNA. The spherical angles defining the
orientation of the protein reactive patch are also updated when the rotational diffusion of the
sphere around its own axes is sampled. To simplify the simulations and minimize the number
of different probability distributions needed to be calculated, the change in spherical rotation
angles has been defined in a coordinate system where

* *q f= =0 0 0. 30( ) ( ) ( )
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In that coordinate system the spherical angles after a time τ1 are f and θ which can be
sampled with a uniform distribution and equation (25) respectively. The spherical rotation
angles f*(τ1) and θ*(τ1) are then transformed to the regular coordinate system of the sphere,
followed by the update of fp and θp by setting them to be equal to the transformed f*(τ1)
and θ*(τ1).

In practice the transformation of f* and θ* is done by first calculating an orthonormal
base giving a set of coordinate axes defined by equation (30), and then expressing (f*, θ*) in
Cartesian coordinates in this base. The Cartesian coordinates of (f*, θ*) are then transformed
to the regular coordinate system of the sphere by summation of the three products of the base
vectors and their corresponding Cartesian coordinate. These new Cartesian coordinates are
converted to spherical coordinates, which gives the updated fp and θp.

The simulation coordinates jD, zD, fp, and θp are periodic, and they are after each update
converted to the periods

p j p

p f p

q p

- < <

- < <
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< <

h
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h

2 2

0 . 31

D

D

p
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Reactive boundary conditions of different geometries

For each rebinding attempt of the simulations the reactivity of the DNA cylinder and protein
sphere is tested to determine if binding occurs. For the cylinder the reactive patch geometries
used are ring, stripe and helix. For the sphere the reactive patch is always axially symmetric,
i.e. it is contained in a circle on the surface of the sphere (see figure 1).

For a cylinder with periodic ring-reactive patches, the cylinder is reactive at (r, jD, zD) if
and only if
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For cylinder with a stripe-reactive patch, the cylinder is reactive at (r, jD, zD) if and only if
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For a cylinder with a helix-reactive patch, the cylindrical azimuthal angle corresponding to
the center of the reactive path is given by

j p=
z

h
2 . 34D

patch ( )

The cylinder is then reactive at (r, jD, zD) if jpatch−πF>−π∧jpatch+πF<π
while it also holds that
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or if jpatch−πF�−π while it also holds that
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For a sphere with a symmetric reactive patch, the relationship between the area of the reactive
patch and the fraction of the sphere that is reactive gives the equation

ò òp
q q f=

f p

f p

q

q q
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sin d d , 38p
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Where θmax is the polar angle between the center and border of the reactive patch. Evaluation
of the integral in equation (38) gives

q = -- Fcos 1 2 . 39pmax
1 ( ) ( )

If θdiff is the angle between the center of the reactive patch (given by fp and θp) and the
contact point of the sphere and cylinder (pointing along the positive x-axis), the sphere is
reactive at (fp, θp) if and only if

q f q q< F, . 40p p Pdiff max( ) ( ) ( )

Figure 9. The probability density of different polar angles θ for a sphere which has
undergone rotational diffusion for three different times with =D D R0.75 .R p

2 The

distribution function in equation (25) has been calculated with 300 terms in the sum for
50 evenly spaced θ before being converted to probability densities (lines). The same
probability density functions have also been estimated with Brownian dynamics
simulations (normalized histograms). For every time step Δt=t/1000 in the
simulations, an axis of rotation is sampled uniformly over the entire sphere surface.
A rotation given by the root of the mean squared angular displacement (MSAD)
3·2DRΔt is then performed around this axis. After 1000 time steps θ is saved. 105

such samples of θ are included in each histogram.
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Discretizing the probability distributions

In order to calculate the return time distribution (equation (17)) and the cylindrical azimuthal
angle distribution (equation (19)) we need to find the roots qmn(equations (11) and (12)). This
was done by making use of the recurrence relations in equation (22) and using brute force
simple bisection with seeds every 0.1 step until 100 unique roots were found. Given the roots
we use the recurrence relation to evaluate the integral in equation (23) before generating the
probability distribution in the azimuthal angle j for each rebinding time. The azimuthal angle
j ranges between −π and π in steps of π/360 radians. For Rc=14 nm the rebinding time
ranges between 0.5 ns and 30 μs in 600 unevenly spaced time steps. We can compare the
simulation results with analytical solutions for a fully reactive protein in the case of stripe and
ring geometries on the cylinder (equations (S11)–(S13)). The simulations compare well with
the analytical solutions also in the diffusion-controlled limit (figure 5(a)).

For the protein rotations, the polar angle distribution (equation (25)) is in a similar way
discretized for all 600 return times. For each return time, the polar angle distribution is
discretized in 50 evenly spaced steps in θ so that the cumulative probability for the largest θ is
smaller than 1–10−5. The analytically derived polar angle distributions (equations (24) and
(25)) agrees very well with Brownian dynamics simulations sampling the same rotational
diffusion process (figure 9).
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